Suppr超能文献

2-脱氧葡萄糖与索拉非尼协同抑制肝癌细胞的增殖和运动能力。

2-Deoxyglucose and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells.

作者信息

Tomizawa Minoru, Shinozaki Fuminobu, Motoyoshi Yasufumi, Sugiyama Takao, Yamamoto Shigenori, Ishige Naoki

机构信息

Department of Gastroenterology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan.

Department of Radiology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan.

出版信息

Oncol Lett. 2017 Feb;13(2):800-804. doi: 10.3892/ol.2016.5510. Epub 2016 Dec 16.

Abstract

Cancer cells consume more glucose than normal cells, mainly due to their increased rate of glycolysis. 2-Deoxy-d-glucose (2DG) is an analogue of glucose, and sorafenib is a kinase inhibitor and molecular agent used to treat hepatocellular carcinoma (HCC). The present study aimed to demonstrate whether combining 2DG and sorafenib suppresses tumor cell proliferation and motility more effectively than either drug alone. HLF and PLC/PRF/5 HCC cells were incubated with sorafenib with or without 1 µM 2DG, and subjected to a proliferation assay. A scratch assay was then performed to analyze cell motility following the addition of 2DG and sorafenib in combination, and each agent alone. RNA was isolated and subjected to reverse transcription-quantitative polymerase chain reaction to analyze the expression of cyclin D1 and matrix metalloproteinase-9 (MMP9) following the addition of 2DG and sorafenib in combination and each agent alone. Proliferation was markedly suppressed in cells cultured with 1 µM 2DG and 30 µM sorafenib compared with cells cultured with either agent alone (P<0.05). In addition, levels of Cyclin D1 expression decreased in cells exposed to 3 µM sorafenib and 1 µM 2DG compared with cells exposed to 2DG or sorafenib alone (P<0.05). Scratch assay demonstrated that the distance between the growing edge of the cell sheet and the scratched line was shorter in cells cultured with sorafenib and 2DG than in cells cultured with 2DG or sorafenib alone (P<0.05). Levels of MMP9 expression decreased more in cells treated with both sorafenib and 2DG than in cells treated with 2DG or sorafenib alone (P<0.05). Therefore, 2DG and sorafenib in combination suppressed the proliferation and motility of HCC cells more effectively than 2DG or sorafenib alone, and a cancer treatment combining both drugs may be more effective than sorafenib alone.

摘要

癌细胞比正常细胞消耗更多的葡萄糖,这主要是由于它们糖酵解速率的增加。2-脱氧-D-葡萄糖(2DG)是葡萄糖的类似物,而索拉非尼是一种激酶抑制剂和用于治疗肝细胞癌(HCC)的分子药物。本研究旨在证明联合使用2DG和索拉非尼是否比单独使用任何一种药物更有效地抑制肿瘤细胞增殖和运动。将人肝永生化细胞系(HLF)和人肝癌细胞系(PLC/PRF/5)与索拉非尼一起培养,添加或不添加1μM 2DG,然后进行增殖试验。然后进行划痕试验,以分析联合添加2DG和索拉非尼以及单独添加每种药物后细胞的运动情况。分离RNA并进行逆转录-定量聚合酶链反应,以分析联合添加2DG和索拉非尼以及单独添加每种药物后细胞周期蛋白D1和基质金属蛋白酶-9(MMP9)的表达。与单独使用任何一种药物培养的细胞相比,用1μM 2DG和30μM索拉非尼培养的细胞增殖明显受到抑制(P<0.05)。此外,与单独暴露于2DG或索拉非尼的细胞相比,暴露于3μM索拉非尼和1μM 2DG的细胞中细胞周期蛋白D1表达水平降低(P<0.05)。划痕试验表明,与单独用2DG或索拉非尼培养的细胞相比,用索拉非尼和2DG培养的细胞中细胞片生长边缘与划痕线之间的距离更短(P<0.05)。与单独用2DG或索拉非尼处理的细胞相比,同时用索拉非尼和2DG处理的细胞中MMP9表达水平下降得更多(P<0.05)。因此,联合使用2DG和索拉非尼比单独使用2DG或索拉非尼更有效地抑制HCC细胞的增殖和运动,两种药物联合治疗癌症可能比单独使用索拉非尼更有效。

相似文献

1
2-Deoxyglucose and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells.
Oncol Lett. 2017 Feb;13(2):800-804. doi: 10.3892/ol.2016.5510. Epub 2016 Dec 16.
2
3
Picropodophyllin and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells.
Oncol Lett. 2014 Nov;8(5):2023-2026. doi: 10.3892/ol.2014.2484. Epub 2014 Aug 27.
4
Suppressive effects of 3-bromopyruvate on the proliferation and the motility of hepatocellular carcinoma cells.
Oncol Rep. 2016 Jan;35(1):59-63. doi: 10.3892/or.2015.4370. Epub 2015 Nov 2.
5
FH535 suppresses the proliferation and motility of hepatocellular carcinoma cells.
Int J Oncol. 2016 Jan;48(1):110-4. doi: 10.3892/ijo.2015.3220. Epub 2015 Oct 29.
6
Strong enhancement by IGF1-R antagonists of hepatocellular carcinoma cell migration inhibition by Sorafenib and/or vitamin K1.
Cell Oncol (Dordr). 2018 Jun;41(3):283-296. doi: 10.1007/s13402-018-0370-z. Epub 2018 Feb 22.

引用本文的文献

1
Interactions between the metabolic reprogramming of liver cancer and tumor microenvironment.
Front Immunol. 2025 Feb 14;16:1494788. doi: 10.3389/fimmu.2025.1494788. eCollection 2025.
2
The regulatory roles and clinical significance of glycolysis in tumor.
Cancer Commun (Lond). 2024 Jul;44(7):761-786. doi: 10.1002/cac2.12549. Epub 2024 Jun 8.
3
Role of lactate and lactate metabolism in liver diseases (Review).
Int J Mol Med. 2024 Jul;54(1). doi: 10.3892/ijmm.2024.5383. Epub 2024 May 24.
4
Exosomal circRNA: emerging insights into cancer progression and clinical application potential.
J Hematol Oncol. 2023 Jun 26;16(1):67. doi: 10.1186/s13045-023-01452-2.
6
Metabolism as a New Avenue for Hepatocellular Carcinoma Therapy.
Int J Mol Sci. 2023 Feb 13;24(4):3710. doi: 10.3390/ijms24043710.
8
Research progress of abnormal lactate metabolism and lactate modification in immunotherapy of hepatocellular carcinoma.
Front Oncol. 2023 Jan 6;12:1063423. doi: 10.3389/fonc.2022.1063423. eCollection 2022.
9
Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c-myc/hexokinase 2 pathway.
J Cell Mol Med. 2022 May;26(10):3031-3045. doi: 10.1111/jcmm.17322. Epub 2022 Apr 16.

本文引用的文献

1
Glucose Addiction in Cancer Therapy: Advances and Drawbacks.
Curr Drug Metab. 2015;16(3):221-42. doi: 10.2174/1389200216666150602145145.
2
Advances in hepatocellular carcinoma: Nonalcoholic steatohepatitis-related hepatocellular carcinoma.
World J Hepatol. 2015 Aug 28;7(18):2155-61. doi: 10.4254/wjh.v7.i18.2155.
3
Liver Ablation: Best Practice.
Radiol Clin North Am. 2015 Sep;53(5):933-71. doi: 10.1016/j.rcl.2015.05.012.
4
Screening for Viral Hepatitis and Hepatocellular Cancer.
Surg Clin North Am. 2015 Oct;95(5):1013-21. doi: 10.1016/j.suc.2015.05.005. Epub 2015 Jun 16.
5
Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer.
Onco Targets Ther. 2015 Jul 29;8:1941-8. doi: 10.2147/OTT.S82835. eCollection 2015.
6
The Warburg effect: a balance of flux analysis.
Metabolomics. 2015 Aug;11(4):787-796. doi: 10.1007/s11306-014-0760-9.
7
Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma.
Cancer Lett. 2015 Oct 10;367(1):1-11. doi: 10.1016/j.canlet.2015.06.019. Epub 2015 Jul 10.
8
Effects of Sorafenib Dose on Acquired Reversible Resistance and Toxicity in Hepatocellular Carcinoma.
Cancer Res. 2015 Jun 15;75(12):2510-9. doi: 10.1158/0008-5472.CAN-14-3687. Epub 2015 Apr 23.
10
2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy.
Cancer Lett. 2014 Dec 28;355(2):176-83. doi: 10.1016/j.canlet.2014.09.003. Epub 2014 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验