Suppr超能文献

生物信息学分析揭示了成釉细胞瘤和牙源性角化囊性瘤发病机制中涉及的基因。

Bioinformatics Analysis Reveals Genes Involved in the Pathogenesis of Ameloblastoma and Keratocystic Odontogenic Tumor.

作者信息

Santos Eliane Macedo Sobrinho, Santos Hércules Otacílio, Dos Santos Dias Ivoneth, Santos Sérgio Henrique, Batista de Paula Alfredo Maurício, Feltenberger John David, Sena Guimarães André Luiz, Farias Lucyana Conceição

机构信息

Department of Dentistry, Universidade Estadual de Montes Claros, Minas Gerais, Brazil.; Instituto Federal do Norte de Minas Gerais-Campus Araçuaí, Minas Gerais, Brazil.

Instituto Federal do Norte de Minas Gerais-Campus Salinas, Minas Gerais, Brazil.

出版信息

Int J Mol Cell Med. 2016 Fall;5(4):199-219. Epub 2016 Dec 6.

Abstract

Pathogenesis of odontogenic tumors is not well known. It is important to identify genetic deregulations and molecular alterations. This study aimed to investigate, through bioinformatic analysis, the possible genes involved in the pathogenesis of ameloblastoma (AM) and keratocystic odontogenic tumor (KCOT). Genes involved in the pathogenesis of AM and KCOT were identified in GeneCards. Gene list was expanded, and the gene interactions network was mapped using the STRING software. "Weighted number of links" (WNL) was calculated to identify "leader genes" (highest WNL). Genes were ranked by K-means method and Kruskal-Wallis test was used (P<0.001). Total interactions score (TIS) was also calculated using all interaction data generated by the STRING database, in order to achieve global connectivity for each gene. The topological and ontological analyses were performed using Cytoscape software and BinGO plugin. Literature review data was used to corroborate the bioinformatics data. was identified as leader gene for AM. In KCOT group, results show and . Both tumors exhibit a power law behavior. Our topological analysis suggested leader genes possibly important in the pathogenesis of AM and KCOT, by clustering coefficient calculated for both odontogenic tumors (0.028 for AM, zero for KCOT). The results obtained in the scatter diagram suggest an important relationship of these genes with the molecular processes involved in AM and KCOT. Ontological analysis for both AM and KCOT demonstrated different mechanisms. Bioinformatics analyzes were confirmed through literature review. These results may suggest the involvement of promising genes for a better understanding of the pathogenesis of AM and KCOT.

摘要

牙源性肿瘤的发病机制尚不清楚。识别基因失调和分子改变很重要。本研究旨在通过生物信息学分析,调查可能参与成釉细胞瘤(AM)和牙源性角化囊性瘤(KCOT)发病机制的基因。在GeneCards中识别参与AM和KCOT发病机制的基因。扩展基因列表,并使用STRING软件绘制基因相互作用网络。计算“加权链接数”(WNL)以识别“主导基因”(最高WNL)。通过K均值法对基因进行排名,并使用Kruskal-Wallis检验(P<0.001)。还使用STRING数据库生成的所有相互作用数据计算总相互作用得分(TIS),以实现每个基因的全局连通性。使用Cytoscape软件和BinGO插件进行拓扑和本体分析。文献综述数据用于证实生物信息学数据。被确定为AM的主导基因。在KCOT组中,结果显示和。两种肿瘤均表现出幂律行为。我们的拓扑分析通过计算两种牙源性肿瘤的聚类系数(AM为0.028,KCOT为零),提示主导基因可能在AM和KCOT的发病机制中起重要作用。散点图中获得的结果表明这些基因与AM和KCOT中涉及的分子过程有重要关系。对AM和KCOT的本体分析显示了不同的机制。通过文献综述证实了生物信息学分析。这些结果可能提示有前景的基因参与其中,有助于更好地理解AM和KCOT的发病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c24f/5353982/cc74c8724ee8/ijmcm-5-199-g001.jpg

相似文献

2
Expression of cell cycle and apoptosis-related proteins in ameloblastoma and keratocystic odontogenic tumor.
Ann Diagn Pathol. 2013 Dec;17(6):518-21. doi: 10.1016/j.anndiagpath.2013.06.006. Epub 2013 Oct 1.
3
Cell proliferation proteins and aggressiveness of histological variants of ameloblastoma and keratocystic odontogenic tumor.
Biotech Histochem. 2019 Jul;94(5):348-351. doi: 10.1080/10520295.2019.1571226. Epub 2019 Feb 26.
7
Study of immunohistochemical demonstration of Bcl-2 protein in ameloblastoma and keratocystic odontogenic tumor.
J Oral Maxillofac Pathol. 2013 May;17(2):176-80. doi: 10.4103/0973-029X.119750.
8
Early dental epithelial transcription factors distinguish ameloblastoma from keratocystic odontogenic tumor.
J Dent Res. 2015 Jan;94(1):101-11. doi: 10.1177/0022034514556815. Epub 2014 Nov 14.

引用本文的文献

1
Exploring gene network and protein interaction analysis of neurotrophin signaling pathway in ameloblastoma.
In Silico Pharmacol. 2024 Jun 10;12(1):56. doi: 10.1007/s40203-024-00223-2. eCollection 2024.
2
Identification of Molecular Mechanisms of Ameloblastoma and Drug Repositioning by Integration of Bioinformatics Analysis and Molecular Docking Simulation.
Bioinform Biol Insights. 2024 May 28;18:11779322241256459. doi: 10.1177/11779322241256459. eCollection 2024.
4
The clinicopathological features and treatments of odontogenic keratocysts.
Am J Cancer Res. 2022 Jul 15;12(7):3479-3485. eCollection 2022.
5
Neutrophil extracellular traps (NETs) modulate inflammatory profile in obese humans and mice: adipose tissue role on NETs levels.
Mol Biol Rep. 2022 Apr;49(4):3225-3236. doi: 10.1007/s11033-022-07157-y. Epub 2022 Jan 22.

本文引用的文献

1
HEDGEHOG/GLI-E2F1 axis modulates iASPP expression and function and regulates melanoma cell growth.
Cell Death Differ. 2015 Dec;22(12):2006-19. doi: 10.1038/cdd.2015.56. Epub 2015 May 29.
4
Ki-67 and p53 expression in solitary sporadic, syndrome associated and recurrent keratocystic odontogenic tumor.
J Oral Maxillofac Pathol. 2014 Sep;18(Suppl 1):S21-5. doi: 10.4103/0973-029X.141330.
5
Bioinformatics analyses combined microarray identify the deregulated microRNAs in oral cancer.
Oncol Lett. 2014 Jul;8(1):218-222. doi: 10.3892/ol.2014.2070. Epub 2014 Apr 15.
6
Transcriptional profiles of SHH pathway genes in keratocystic odontogenic tumor and ameloblastoma.
J Oral Pathol Med. 2014 Sep;43(8):619-26. doi: 10.1111/jop.12180. Epub 2014 Jun 14.
7
Different Protein Expressions between Peripheral Ameloblastoma and Oral Basal Cell Carcinoma Occurred at the Same Mandibular Molar Area.
Korean J Pathol. 2014 Apr;48(2):151-8. doi: 10.4132/KoreanJPathol.2014.48.2.151. Epub 2014 Apr 28.
9
Immunohistochemical Expression of PCNA in Epithelial Linings of Selected Odontogenic Lesions.
J Clin Diagn Res. 2013 Nov;7(11):2615-8. doi: 10.7860/JCDR/2013/5824.3629. Epub 2013 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验