Suppr超能文献

酵母作为研究硒化合物代谢影响的模型系统。

Yeast as a model system to study metabolic impact of selenium compounds.

作者信息

Herrero Enrique, Wellinger Ralf E

机构信息

Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Rovira Roure 80, 25198 Lleida, Spain.

Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Sevilla, Spain.

出版信息

Microb Cell. 2015 Apr 8;2(5):139-149. doi: 10.15698/mic2015.05.200.

Abstract

Inorganic Se forms such as selenate or selenite (the two more abundant forms in nature) can be toxic in cells, which constitute an adequate model to study such toxicity at the molecular level and the functions participating in protection against Se compounds. Those Se forms enter the yeast cell through other oxyanion transporters. Once inside the cell, inorganic Se forms may be converted into selenide through a reductive pathway that in physiological conditions involves reduced glutathione with its consequent oxidation into diglutathione and alteration of the cellular redox buffering capacity. Selenide can subsequently be converted by molecular oxygen into elemental Se, with production of superoxide anions and other reactive oxygen species. Overall, these events result in DNA damage and dose-dependent reversible or irreversible protein oxidation, although additional oxidation of other cellular macromolecules cannot be discarded. Stress-adaptation pathways are essential for efficient Se detoxification, while activation of DNA damage checkpoint and repair pathways protects against Se-mediated genotoxicity. We propose that yeast may be used to improve our knowledge on the impact of Se on metal homeostasis, the identification of Se-targets at the DNA and protein levels, and to gain more insights into the mechanism of Se-mediated apoptosis.

摘要

无机硒形式,如硒酸盐或亚硒酸盐(自然界中两种含量较高的形式)在细胞中可能具有毒性,这构成了一个在分子水平研究此类毒性以及参与抵御硒化合物的保护功能的合适模型。这些硒形式通过其他氧阴离子转运蛋白进入酵母细胞。一旦进入细胞,无机硒形式可能通过一条还原途径转化为硒化物,在生理条件下,该途径涉及还原型谷胱甘肽,其随后被氧化为二谷胱甘肽,并改变细胞的氧化还原缓冲能力。硒化物随后可被分子氧转化为元素硒,同时产生超氧阴离子和其他活性氧物种。总体而言,这些事件会导致DNA损伤以及剂量依赖性的可逆或不可逆蛋白质氧化,尽管不能排除其他细胞大分子的额外氧化。应激适应途径对于有效的硒解毒至关重要,而DNA损伤检查点和修复途径的激活可抵御硒介导的基因毒性。我们认为,酵母可用于增进我们对硒对金属稳态影响的了解,在DNA和蛋白质水平上确定硒的作用靶点,并更深入地了解硒介导的细胞凋亡机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1140/5349236/c8a24b35e88f/mic-02-139-g01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验