Suppr超能文献

利用飞行时间二次离子质谱和多元分析确定表面固定化抗体的取向。

Surface immobilized antibody orientation determined using ToF-SIMS and multivariate analysis.

机构信息

Centre for Materials and Surface Science and Department of Chemistry and Physics, School of Molecular Sciences, La Trobe University, VIC 3086, Australia; CSIRO Manufacturing, VIC 3168, Australia.

Centre for Materials and Surface Science and Department of Chemistry and Physics, School of Molecular Sciences, La Trobe University, VIC 3086, Australia.

出版信息

Acta Biomater. 2017 Jun;55:172-182. doi: 10.1016/j.actbio.2017.03.038. Epub 2017 Mar 28.

Abstract

UNLABELLED

Antibody orientation at solid phase interfaces plays a critical role in the sensitive detection of biomolecules during immunoassays. Correctly oriented antibodies with solution-facing antigen binding regions have improved antigen capture as compared to their randomly oriented counterparts. Direct characterization of oriented proteins with surface analysis methods still remains a challenge however surface sensitive techniques such as Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) provide information-rich data that can be used to probe antibody orientation. Diethylene glycol dimethyl ether plasma polymers (DGpp) functionalized with chromium (DGpp+Cr) have improved immunoassay performance that is indicative of preferential antibody orientation. Herein, ToF-SIMS data from proteolytic fragments of anti-EGFR antibody bound to DGpp and DGpp+Cr are used to construct artificial neural network (ANN) and principal component analysis (PCA) models indicative of correctly oriented systems. Whole antibody samples (IgG) test against each of the models indicated preferential antibody orientation on DGpp+Cr. Cross-reference between ANN and PCA models yield 20 mass fragments associated with F(ab') region representing correct orientation, and 23 mass fragments associated with the Fc region representing incorrect orientation. Mass fragments were then compared to amino acid fragments and amino acid composition in F(ab') and Fc regions. A ratio of the sum of the ToF-SIMS ion intensities from the F(ab') fragments to the Fc fragments demonstrated a 50% increase in intensity for IgG on DGpp+Cr as compared to DGpp. The systematic data analysis methodology employed herein offers a new approach for the investigation of antibody orientation applicable to a range of substrates.

STATEMENT OF SIGNIFICANCE

Controlled orientation of antibodies at solid phases is critical for maximizing antigen detection in biosensors and immunoassays. Surface-sensitive techniques (such as ToF-SIMS), capable of direct characterization of surface immobilized and oriented antibodies, are under-utilized in current practice. Selection of a small number of mass fragments for analysis, typically pertaining to amino acids, is commonplace in literature, leaving the majority of the information-rich spectra unanalyzed. The novelty of this work is the utilization of a comprehensive, unbiased mass fragment list and the employment of principal component analysis (PCA) and artificial neural network (ANN) models in a unique methodology to prove antibody orientation. This methodology is of significant and broad interest to the scientific community as it is applicable to a range of substrates and allows for direct, label-free characterization of surface bound proteins.

摘要

未加标签

抗体在固相界面的取向在免疫分析中对生物分子的灵敏检测起着关键作用。与随机取向的抗体相比,具有面向溶液的抗原结合区域的正确取向抗体提高了抗原的捕获能力。然而,用表面分析方法直接表征定向蛋白质仍然是一个挑战,例如飞行时间二次离子质谱(ToF-SIMS)提供了丰富的信息数据,可以用于探测抗体的取向。用铬功能化的二甘醇二甲醚等离子体聚合物(DGpp+Cr)提高了免疫分析性能,表明抗体具有优先取向。本文利用结合在 DGpp 和 DGpp+Cr 上的抗 EGFR 抗体的蛋白水解片段的 ToF-SIMS 数据构建了人工神经网络(ANN)和主成分分析(PCA)模型,以指示正确取向的系统。针对每个模型的全抗体(IgG)样本测试表明,DGpp+Cr 上存在抗体的优先取向。ANN 和 PCA 模型之间的交叉参考产生了 20 个与 F(ab') 区域相关的质量片段,代表正确的取向,以及 23 个与 Fc 区域相关的质量片段,代表不正确的取向。然后将质量片段与 F(ab') 和 Fc 区域的氨基酸片段和氨基酸组成进行比较。DGpp+Cr 上 IgG 的 ToF-SIMS 离子强度总和与 Fc 片段的离子强度总和的比值表明,与 DGpp 相比,强度增加了 50%。本文采用的系统数据分析方法为研究适用于各种基质的抗体取向提供了一种新方法。

意义声明

抗体在固相中的定向控制对于最大限度地提高生物传感器和免疫分析中的抗原检测至关重要。表面敏感技术(如 ToF-SIMS)能够直接表征表面固定和定向的抗体,但在当前实践中利用不足。在文献中,通常选择少数几个用于分析的质量片段,通常与氨基酸有关,而大部分信息丰富的光谱未进行分析。这项工作的新颖之处在于利用全面、无偏的质量片段列表,并在独特的方法中采用主成分分析(PCA)和人工神经网络(ANN)模型来证明抗体的取向。该方法对科学界具有重要意义和广泛的兴趣,因为它适用于各种基质,并允许对表面结合的蛋白质进行直接、无标记的表征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验