Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
Metab Eng. 2017 May;41:67-81. doi: 10.1016/j.ymben.2017.03.006. Epub 2017 Mar 29.
Nitric oxide (NO) is a chemical weapon within the arsenal of immune cells, but is also generated endogenously by different bacteria. Pseudomonas aeruginosa are pathogens that contain an NO-generating nitrite (NO) reductase (NirS), and NO has been shown to influence their virulence. Interestingly, P. aeruginosa also contain NO dioxygenase (Fhp) and nitrate (NO) reductases, which together with NirS provide the potential for NO to be metabolically cycled (NO→NO→NO→NO). Deeper understanding of NO metabolism in P. aeruginosa will increase knowledge of its pathogenesis, and computational models have proven to be useful tools for the quantitative dissection of NO biochemical networks. Here we developed such a model for P. aeruginosa and confirmed its predictive accuracy with measurements of NO, O, NO, and NO in mutant cultures devoid of Fhp or NorCB (NO reductase) activity. Using the model, we assessed whether NO was metabolically cycled in aerobic P. aeruginosa cultures. Calculated fluxes indicated a bottleneck at NO, which was relieved upon O depletion. As cell growth depleted dissolved O levels, NO was converted to NO at near-stoichiometric levels, whereas NO consumption did not coincide with NO or NO accumulation. Assimilatory NO reductase (NirBD) or NorCB activity could have prevented NO cycling, and experiments with ΔnirB, ΔnirS, and ΔnorC showed that NorCB was responsible for loss of flux from the cycle. Collectively, this work provides a computational tool to analyze NO metabolism in P. aeruginosa, and establishes that P. aeruginosa use NorCB to prevent metabolic cycling of NO.
一氧化氮 (NO) 是免疫细胞武器库中的一种化学武器,但也由不同的细菌内源性产生。铜绿假单胞菌是含有生成一氧化氮 (NO) 的亚硝酸盐 (NO) 还原酶 (NirS) 的病原体,并且已经表明 NO 会影响它们的毒力。有趣的是,铜绿假单胞菌还含有一氧化氮双加氧酶 (Fhp) 和硝酸盐 (NO) 还原酶,它们与 NirS 一起为 NO 进行代谢循环提供了潜力 (NO→NO→NO→NO)。深入了解铜绿假单胞菌中的 NO 代谢将增加对其发病机制的了解,并且计算模型已被证明是定量剖析 NO 生化网络的有用工具。在这里,我们为铜绿假单胞菌开发了这样一个模型,并通过测量缺乏 Fhp 或 NorCB(NO 还原酶)活性的突变体培养物中的 NO、O、NO 和 NO 来验证其预测准确性。使用该模型,我们评估了有氧铜绿假单胞菌培养物中是否进行了代谢循环。计算出的通量表明 NO 存在瓶颈,当 O 耗尽时,瓶颈得到缓解。随着细胞生长耗尽溶解氧水平,NO 几乎以化学计量比转化为 NO,而 NO 的消耗与 NO 或 NO 的积累并不吻合。同化性 NO 还原酶 (NirBD) 或 NorCB 活性可能阻止了 NO 循环,并且与 ΔnirB、ΔnirS 和 ΔnorC 的实验表明 NorCB 负责从循环中失去通量。总的来说,这项工作提供了一种分析铜绿假单胞菌中 NO 代谢的计算工具,并确定铜绿假单胞菌使用 NorCB 来防止 NO 的代谢循环。