Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America.
Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America.
PLoS Comput Biol. 2024 Apr 26;20(4):e1012031. doi: 10.1371/journal.pcbi.1012031. eCollection 2024 Apr.
With the generation of spatially resolved transcriptomics of microbial biofilms, computational tools can be used to integrate this data to elucidate the multi-scale mechanisms controlling heterogeneous biofilm metabolism. This work presents a Multi-scale model of Metabolism In Cellular Systems (MiMICS) which is a computational framework that couples a genome-scale metabolic network reconstruction (GENRE) with Hybrid Automata Library (HAL), an existing agent-based model and reaction-diffusion model platform. A key feature of MiMICS is the ability to incorporate multiple -omics-guided metabolic models, which can represent unique metabolic states that yield different metabolic parameter values passed to the extracellular models. We used MiMICS to simulate Pseudomonas aeruginosa regulation of denitrification and oxidative stress metabolism in hypoxic and nitric oxide (NO) biofilm microenvironments. Integration of P. aeruginosa PA14 biofilm spatial transcriptomic data into a P. aeruginosa PA14 GENRE generated four PA14 metabolic model states that were input into MiMICS. Characteristic of aerobic, denitrification, and oxidative stress metabolism, the four metabolic model states predicted different oxygen, nitrate, and NO exchange fluxes that were passed as inputs to update the agent's local metabolite concentrations in the extracellular reaction-diffusion model. Individual bacterial agents chose a PA14 metabolic model state based on a combination of stochastic rules, and agents sensing local oxygen and NO. Transcriptome-guided MiMICS predictions suggested microscale denitrification and oxidative stress metabolic heterogeneity emerged due to local variability in the NO biofilm microenvironment. MiMICS accurately predicted the biofilm's spatial relationships between denitrification, oxidative stress, and central carbon metabolism. As simulated cells responded to extracellular NO, MiMICS revealed dynamics of cell populations heterogeneously upregulating reactions in the denitrification pathway, which may function to maintain NO levels within non-toxic ranges. We demonstrated that MiMICS is a valuable computational tool to incorporate multiple -omics-guided metabolic models to mechanistically map heterogeneous microbial metabolic states to the biofilm microenvironment.
随着微生物生物膜空间分辨转录组学的产生,计算工具可用于整合这些数据,以阐明控制异质生物膜代谢的多尺度机制。本工作提出了一个多尺度细胞系统代谢模型(MiMICS),它是一个计算框架,将基因组尺度代谢网络重建(GENRE)与混合自动机库(HAL)耦合在一起,HAL 是一个现有的基于代理的模型和反应扩散模型平台。MiMICS 的一个关键特点是能够结合多个基于组学的代谢模型,这些模型可以代表产生不同代谢参数值的独特代谢状态,这些参数值传递给细胞外模型。我们使用 MiMICS 模拟铜绿假单胞菌在缺氧和一氧化氮(NO)生物膜微环境中对反硝化和氧化应激代谢的调控。将铜绿假单胞菌 PA14 生物膜空间转录组数据整合到铜绿假单胞菌 PA14 GENRE 中,生成了四个铜绿假单胞菌 PA14 代谢模型状态,这些状态被输入到 MiMICS 中。这四个代谢模型状态代表了有氧、反硝化和氧化应激代谢的特征,预测了不同的氧、硝酸盐和 NO 交换通量,这些通量作为输入被传递来更新细胞外反应扩散模型中代理的局部代谢物浓度。单个细菌代理根据随机规则和代理感知局部氧和 NO 的组合选择铜绿假单胞菌代谢模型状态。基于组学的 MiMICS 预测表明,由于 NO 生物膜微环境中的局部变异性,微尺度反硝化和氧化应激代谢异质性出现。MiMICS 准确预测了生物膜中反硝化、氧化应激和中心碳代谢之间的空间关系。随着模拟细胞对外界 NO 的反应,MiMICS 揭示了细胞群体动态地异质地上调反硝化途径中的反应,这可能有助于将 NO 水平维持在非毒性范围内。我们证明 MiMICS 是一种有价值的计算工具,可用于结合多个基于组学的代谢模型,将异质微生物代谢状态机械地映射到生物膜微环境。