Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
J Basic Microbiol. 2019 Nov;59(11):1154-1162. doi: 10.1002/jobm.201900267. Epub 2019 Sep 25.
Nitric oxide (NO) reductase (NorCB) of Pseudomonas aeruginosa is an essential enzyme that metabolizes NO and alleviates anaerobic NO toxicity during denitrification processes under anaerobic conditions. However, the molecular functions of norCB in the presence of oxygen are poorly understood. This study utilized norCB knockout from P. aeruginosa ATCC 9027 to analyze the resulting phenotypic changes of ΔnorCB in comparison to the wild-type parental strain (WT) and the complementary strain (ΔnorCB-com). The results demonstrated an increase in planktonic growth and biofilm formation by ΔnorCB compared to WT and ΔnorCB-com in the presence of isothiazolones under aerobic conditions. Deletion of norCB led to increased swimming ability and decreased pyocyanin production. Inactivation of norCB also led to an increase of cellular H O concentration due to decreased activity of its catalases. In addition, the deletion of norCB also influenced the relative expressions of several other genes, including norD, nirS, hmgA, and hpd. These findings provide preliminary evidence that norCB in P. aeruginosa plays an essential role in bacterial life process under aerobic conditions and improves the application of denitrification in the next step.
铜绿假单胞菌的一氧化氮(NO)还原酶(NorCB)是一种必需酶,它在厌氧条件下的反硝化过程中代谢 NO 并减轻厌氧 NO 毒性。然而,目前对于 NorCB 在有氧条件下的分子功能知之甚少。本研究利用铜绿假单胞菌 ATCC 9027 的 norCB 敲除,分析了 norCB 缺失株(ΔnorCB)与野生型亲本株(WT)和互补株(ΔnorCB-com)相比的表型变化。结果表明,与 WT 和 ΔnorCB-com 相比,在有氧条件下,异噻唑酮存在时,ΔnorCB 的浮游生长和生物膜形成增加。norCB 的缺失导致游动能力增加,而绿脓菌素的产生减少。NorCB 的失活还导致由于其过氧化氢酶活性降低,细胞 H2O2 浓度增加。此外,norCB 的缺失还影响了其他几个基因的相对表达,包括 norD、nirS、hmgA 和 hpd。这些发现初步表明,铜绿假单胞菌中的 norCB 在有氧条件下的细菌生命过程中起着至关重要的作用,并为下一步的反硝化应用提供了改进。