Suppr超能文献

Conformational stability of ferrocytochrome c. Electrostatic aspects of the oxidation by tris(1,10-phenanthroline)cobalt(III) at low ionic strength.

作者信息

Rush J D, Koppenol W H, Garber E A, Margoliash E

机构信息

Department of Chemistry, Louisiana State University, Baton Rouge 70803.

出版信息

J Biol Chem. 1988 Jun 5;263(16):7514-20.

PMID:2836388
Abstract

At ionic strengths below 0.1 M the oxidation of horse ferrocytochrome c by tris(1,10-phenanthroline)cobalt (III) and tris(2,2'-bipyridine)cobalt(III) proceeds by a pathway which is independent of the transition metal complex concentration. Formation of an activated form of the protein appears to be rate limiting. The rate of oxidation decreases as the ionic strength increases. This dependence of the reaction rate on inert electrolyte concentration indicates that electrostatic association of anions under physiological ionic strength confers stability to the protein. The activated form of the protein, which reacts at least 10(4) times as fast as the predominant form, is thought to be a conformation of the reduced protein with an open heme crevice. Binding of the open form of ferrocytochrome c with the redox-inactive cationic transition metal complexes hexamminecobalt(III) and tris(1,10-phenanthroline)chromium(III) inhibits the oxidation by tris(1,10-phenanthroline)cobalt(III). Reactions of tris(1,10-phenanthroline)cobalt(III) with 4-carboxy-2,5-dinitrophenyllysine 13 and 72 ferrocytochromes c show no dependence on ionic strength. NMR studies at pH 7 demonstrate that ferricytochrome c is partly (15%) in the open conformation at low ionic strength. Furthermore, the interaction of redox-inert tris (1,10-phenanthroline)chromium(III) with ferricytochrome c under conditions identical to those of the kinetic studies demonstrates that the transition metal complex binds only to the open form of the protein. Titration with increasing amounts of tris(1,10-phenanthroline) chromium(III) shows changes in the NMR spectrum that are inconsistent with a single binding site.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验