Kendrick Felicity, Evans Neil D, Arnulf Bertrand, Avet-Loiseau Hervé, Decaux Olivier, Dejoie Thomas, Fouquet Guillemette, Guidez Stéphanie, Harel Stéphanie, Hebraud Benjamin, Javaugue Vincent, Richez Valentine, Schraen Susanna, Touzeau Cyrille, Moreau Philippe, Leleu Xavier, Harding Stephen, Chappell Michael J
School of Engineering, University of Warwick Coventry, UK.
Hôpital Saint-Louis Paris, France.
Front Physiol. 2017 Mar 17;8:149. doi: 10.3389/fphys.2017.00149. eCollection 2017.
Immunoglobulin G (IgG) metabolism has received much attention in the literature for two reasons: (i) IgG homeostasis is regulated by the neonatal Fc receptor (FcRn), by a pH-dependent and saturable recycling process, which presents an interesting biological system; (ii) the IgG-FcRn interaction may be exploitable as a means for extending the plasma half-life of therapeutic monoclonal antibodies, which are primarily IgG-based. A less-studied problem is the importance of endogenous IgG metabolism in IgG multiple myeloma. In multiple myeloma, quantification of serum monoclonal immunoglobulin plays an important role in diagnosis, monitoring and response assessment. In order to investigate the dynamics of IgG in this setting, a mathematical model characterizing the metabolism of endogenous IgG in humans is required. A number of authors have proposed a two-compartment nonlinear model of IgG metabolism in which saturable recycling is described using Michaelis-Menten kinetics; however it may be difficult to estimate the model parameters from the limited experimental data that are available. The purpose of this study is to analyse the model alongside the available data from experiments in humans and estimate the model parameters. In order to achieve this aim we linearize the model and use several methods of model and parameter validation: stability analysis, structural identifiability analysis, and sensitivity analysis based on traditional sensitivity functions and generalized sensitivity functions. We find that all model parameters are identifiable, structurally and taking into account parameter correlations, when several types of model output are used for parameter estimation. Based on these analyses we estimate parameter values from the limited available data and compare them with previously published parameter values. Finally we show how the model can be applied in future studies of treatment effectiveness in IgG multiple myeloma with simulations of serum monoclonal IgG responses during treatment.
免疫球蛋白G(IgG)的代谢在文献中备受关注,原因有二:(i)IgG的稳态由新生儿Fc受体(FcRn)通过pH依赖且饱和的再循环过程进行调节,这是一个有趣的生物学系统;(ii)IgG与FcRn的相互作用可被用作延长治疗性单克隆抗体血浆半衰期的手段,这些单克隆抗体主要基于IgG。一个较少被研究的问题是内源性IgG代谢在IgG多发性骨髓瘤中的重要性。在多发性骨髓瘤中,血清单克隆免疫球蛋白的定量在诊断、监测和反应评估中起着重要作用。为了研究这种情况下IgG的动态变化,需要一个表征人体内源性IgG代谢的数学模型。许多作者提出了一个IgG代谢的两室非线性模型,其中使用米氏动力学描述饱和再循环;然而,从有限的可用实验数据中估计模型参数可能很困难。本研究的目的是结合人体实验的可用数据对模型进行分析,并估计模型参数。为了实现这一目标,我们将模型线性化,并使用几种模型和参数验证方法:稳定性分析、结构可识别性分析以及基于传统灵敏度函数和广义灵敏度函数的灵敏度分析。我们发现,当使用几种类型的模型输出进行参数估计时,所有模型参数在结构上以及考虑参数相关性时都是可识别的。基于这些分析,我们从有限的可用数据中估计参数值,并将它们与先前发表的参数值进行比较。最后,我们展示了该模型如何通过模拟治疗期间血清单克隆IgG反应,应用于未来IgG多发性骨髓瘤治疗效果的研究中。