Suppr超能文献

评估一个用于预测高亲和力结合 FcRn 的 mAbs 体内处置的悬链线 PBPK 模型。

Evaluation of a catenary PBPK model for predicting the in vivo disposition of mAbs engineered for high-affinity binding to FcRn.

机构信息

Department of Pharmaceutical Sciences, University at Buffalo, the State University of New York, 452 Kapoor Hall, Buffalo, New York 14260, USA.

出版信息

AAPS J. 2012 Dec;14(4):850-9. doi: 10.1208/s12248-012-9395-9. Epub 2012 Sep 7.

Abstract

Efforts have been made to extend the biological half-life of monoclonal antibody drugs (mAbs) by increasing the affinity of mAb-neonatal Fc receptor (FcRn) binding; however, mixed results have been reported. One possible reason for a poor correlation between the equilibrium affinity of mAb-FcRn binding and mAb systemic pharmacokinetics is that the timecourse of endosomal transit is too brief to allow binding to reach equilibrium. In the present work, a new physiologically based pharmacokinetic (PBPK) model has been developed to approximate the pH and time-dependent endosomal trafficking of immunoglobulin G (IgG). In this model, a catenary sub-model was utilized to describe the endosomal transit of IgG and the time dependencies in IgG-FcRn association and dissociation. The model performs as well as a previously published PBPK model, with assumed equilibrium kinetics of mAb-FcRn binding, in capturing the disposition profile of murine mAb from wild-type and FcRn knockout mice (catenary vs. equilibrium model: r (2), 0.971 vs. 0.978; median prediction error, 3.38% vs. 3.79%). Compared to the PBPK model with equilibrium binding, the present catenary PBPK model predicts much more moderate changes in half-life with altered FcRn binding. For example, for a 10-fold increase in binding affinity, the catenary model predicts <2.5-fold change in half-life compared to an ∼8-fold increase as predicted by the equilibrium model; for a 100-fold increase in binding affinity, the catenary model predicts ∼7-fold change in half-life compared to >70-fold increase as predicted by the equilibrium model. Predictions of the new catenary PBPK model are more consistent with experimental results in the published literature.

摘要

人们努力通过提高单抗-新生 Fc 受体(FcRn)结合亲和力来延长单克隆抗体药物(mAbs)的生物半衰期;然而,报道的结果却不尽相同。mAb-FcRn 结合的平衡亲和力与 mAb 系统药代动力学之间相关性较差的一个可能原因是内体转运的时间过程过于短暂,无法使结合达到平衡。在本研究中,开发了一种新的基于生理学的药代动力学(PBPK)模型来近似 IgG 的 pH 和时间依赖性内体转运。在该模型中,利用链式子模型来描述 IgG 的内体转运以及 IgG-FcRn 结合和解离的时间依赖性。该模型与假设 mAb-FcRn 结合的平衡动力学的先前发表的 PBPK 模型表现一样好,能够捕获野生型和 FcRn 敲除小鼠中鼠源 mAb 的处置特征(链式与平衡模型:r²,0.971 与 0.978;中位数预测误差,3.38%与 3.79%)。与具有平衡结合的 PBPK 模型相比,当前的链式 PBPK 模型预测 FcRn 结合改变时半衰期的变化要温和得多。例如,对于结合亲和力增加 10 倍,链式模型预测半衰期的变化<2.5 倍,而平衡模型预测的半衰期变化约为 8 倍;对于结合亲和力增加 100 倍,链式模型预测半衰期的变化约为 7 倍,而平衡模型预测的半衰期变化>70 倍。新的链式 PBPK 模型的预测结果与已发表文献中的实验结果更为一致。

相似文献

2
Are endosomal trafficking parameters better targets for improving mAb pharmacokinetics than FcRn binding affinity?
Mol Immunol. 2013 Dec;56(4):660-74. doi: 10.1016/j.molimm.2013.05.008. Epub 2013 Aug 2.
4
Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human.
J Pharmacokinet Pharmacodyn. 2012 Feb;39(1):67-86. doi: 10.1007/s10928-011-9232-2. Epub 2011 Dec 6.
5
Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice.
J Pharmacokinet Pharmacodyn. 2007 Oct;34(5):687-709. doi: 10.1007/s10928-007-9065-1. Epub 2007 Jul 18.
8
Model-Based Assessment of the Contribution of Monocytes and Macrophages to the Pharmacokinetics of Monoclonal Antibodies.
Pharm Res. 2022 Feb;39(2):239-250. doi: 10.1007/s11095-022-03177-2. Epub 2022 Feb 3.
9
A novel in vitro assay to predict neonatal Fc receptor-mediated human IgG half-life.
MAbs. 2015;7(5):912-21. doi: 10.1080/19420862.2015.1054585.
10
Monoclonal antibodies with identical Fc sequences can bind to FcRn differentially with pharmacokinetic consequences.
Drug Metab Dispos. 2011 Sep;39(9):1469-77. doi: 10.1124/dmd.111.039453. Epub 2011 May 24.

引用本文的文献

3
Kinetics of RPR Decline in Pregnant Persons Treated for Syphilis in Pregnancy and Their Infants.
Pathogens. 2024 Nov 17;13(11):1010. doi: 10.3390/pathogens13111010.
4
Physiologically based pharmacokinetic models for systemic disposition of protein therapeutics in rabbits.
Front Pharmacol. 2024 Aug 28;15:1427325. doi: 10.3389/fphar.2024.1427325. eCollection 2024.
5
Assessment and incorporation of in vitro correlates to pharmacokinetic outcomes in antibody developability workflows.
MAbs. 2024 Jan-Dec;16(1):2384104. doi: 10.1080/19420862.2024.2384104. Epub 2024 Jul 31.
6
Translational two-pore PBPK model to characterize whole-body disposition of different-size endogenous and exogenous proteins.
J Pharmacokinet Pharmacodyn. 2024 Oct;51(5):449-476. doi: 10.1007/s10928-024-09922-x. Epub 2024 May 1.
7
Kinetic modeling of the plasma pharmacokinetic profiles of ADAMTS13 fragment and its Fc-fusion counterpart in mice.
Front Pharmacol. 2024 Mar 25;15:1352842. doi: 10.3389/fphar.2024.1352842. eCollection 2024.

本文引用的文献

1
Marketed therapeutic antibodies compendium.
MAbs. 2012 May-Jun;4(3):413-5. doi: 10.4161/mabs.19931. Epub 2012 Apr 26.
2
Effects of charge on antibody tissue distribution and pharmacokinetics.
Bioconjug Chem. 2010 Dec 15;21(12):2153-63. doi: 10.1021/bc100261d. Epub 2010 Nov 5.
3
Antibody-based therapeutics to watch in 2011.
MAbs. 2011 Jan-Feb;3(1):76-99. doi: 10.4161/mabs.3.1.13895. Epub 2011 Jan 1.
4
A therapeutic anti-VEGF antibody with increased potency independent of pharmacokinetic half-life.
Cancer Res. 2010 Apr 15;70(8):3269-77. doi: 10.1158/0008-5472.CAN-09-4580. Epub 2010 Mar 30.
5
Reduced elimination of IgG antibodies by engineering the variable region.
Protein Eng Des Sel. 2010 May;23(5):385-92. doi: 10.1093/protein/gzq009. Epub 2010 Feb 15.
7
Enhanced antibody half-life improves in vivo activity.
Nat Biotechnol. 2010 Feb;28(2):157-9. doi: 10.1038/nbt.1601. Epub 2010 Jan 17.
9
Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody.
J Pharm Sci. 2010 Mar;99(3):1582-600. doi: 10.1002/jps.21918.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验