Azurmendi Hugo F, Battistel Marcos D, Zarb Jasmin, Lichaa Flora, Negrete Virgen Alejandro, Shiloach Joseph, Freedberg Darón I
Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA.
Biotechnology Unit, MSC 5522, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Glycobiology. 2017 Sep 1;27(9):900-911. doi: 10.1093/glycob/cwx025.
Over the years, structural characterizations of α(2-8)-polysialic acid (polySia) in solution have produced inconclusive results. Efforts for obtaining detailed information in this important antigen have focused primarily on the α-linked residues and not on the distinctive characteristics of the terminal ones. The thermodynamically preferred anomeric configuration for the reducing end of sialic acids is β, which has the [I]CO2- group equatorial and the OH ([I]OH2) axial, while for all other residues the CO2- group is axial. We show that this purportedly minor difference has distinct consequences for the structure of α(2-8)-polySia near the reducing end, as the β configuration places the [I]OH2 in a favorable position for the formation of a hydrogen bond with the carboxylate group of the following residue ([II]CO2-). Molecular dynamics (MD) simulations predicted the hydrogen bond, which we subsequently directly detected by NMR. The combination of MD and residual dipolar couplings shows that the net result for the structure of Sia2-βOH is a stable conformation with well-defined hydration and charge patterns, and consistent with experimental NOE-based hydroxyl and aliphatic inter-proton distances. Moreover, we provide evidence that this distinct conformation is preserved on Sia oligosaccharides, thus constituting a motif that determines the structure and dynamics of α(2-8)-polySia for at least the first two residues of the polymer. We suggest the hypothesis that this structural motif sheds light on a longtime puzzling observation for the requirement of 10 residues of α(2-8)-polySia in order to bind effectively to specific antibodies, about four units more than for analogous cases.
多年来,对溶液中α(2-8)-聚唾液酸(聚唾液酸)的结构表征一直没有得出明确的结果。获取这种重要抗原详细信息的努力主要集中在α连接的残基上,而不是末端残基的独特特征。唾液酸还原端在热力学上更倾向的异头构型是β型,其中[I]CO2-基团处于平伏键,OH([I]OH2)处于直立键,而对于所有其他残基,CO2-基团处于直立键。我们表明,这种据称微小的差异对还原端附近的α(2-8)-聚唾液酸结构有明显影响,因为β构型使[I]OH2处于与下一个残基([II]CO2-)的羧基形成氢键的有利位置。分子动力学(MD)模拟预测了这种氢键,我们随后通过核磁共振直接检测到了它。MD和剩余偶极耦合的结合表明,Sia2-βOH结构的最终结果是一种具有明确水合和电荷模式的稳定构象,并且与基于核磁共振欧沃豪斯效应(NOE)的羟基和脂肪族质子间距离实验结果一致。此外,我们提供证据表明,这种独特的构象在唾液酸寡糖上得以保留,从而构成了一种基序,该基序至少决定了聚合物前两个残基的α(2-8)-聚唾液酸的结构和动力学。我们提出一个假设,即这种结构基序揭示了一个长期存在的令人困惑的观察结果,即α(2-8)-聚唾液酸需要10个残基才能有效结合特定抗体,这比类似情况多大约四个单元。