Suppr超能文献

α(2-8)-聚唾液酸中的β-还原端构成了一种独特的结构基序。

The β-reducing end in α(2-8)-polysialic acid constitutes a unique structural motif.

作者信息

Azurmendi Hugo F, Battistel Marcos D, Zarb Jasmin, Lichaa Flora, Negrete Virgen Alejandro, Shiloach Joseph, Freedberg Darón I

机构信息

Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA.

Biotechnology Unit, MSC 5522, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Glycobiology. 2017 Sep 1;27(9):900-911. doi: 10.1093/glycob/cwx025.

Abstract

Over the years, structural characterizations of α(2-8)-polysialic acid (polySia) in solution have produced inconclusive results. Efforts for obtaining detailed information in this important antigen have focused primarily on the α-linked residues and not on the distinctive characteristics of the terminal ones. The thermodynamically preferred anomeric configuration for the reducing end of sialic acids is β, which has the [I]CO2- group equatorial and the OH ([I]OH2) axial, while for all other residues the CO2- group is axial. We show that this purportedly minor difference has distinct consequences for the structure of α(2-8)-polySia near the reducing end, as the β configuration places the [I]OH2 in a favorable position for the formation of a hydrogen bond with the carboxylate group of the following residue ([II]CO2-). Molecular dynamics (MD) simulations predicted the hydrogen bond, which we subsequently directly detected by NMR. The combination of MD and residual dipolar couplings shows that the net result for the structure of Sia2-βOH is a stable conformation with well-defined hydration and charge patterns, and consistent with experimental NOE-based hydroxyl and aliphatic inter-proton distances. Moreover, we provide evidence that this distinct conformation is preserved on Sia oligosaccharides, thus constituting a motif that determines the structure and dynamics of α(2-8)-polySia for at least the first two residues of the polymer. We suggest the hypothesis that this structural motif sheds light on a longtime puzzling observation for the requirement of 10 residues of α(2-8)-polySia in order to bind effectively to specific antibodies, about four units more than for analogous cases.

摘要

多年来,对溶液中α(2-8)-聚唾液酸(聚唾液酸)的结构表征一直没有得出明确的结果。获取这种重要抗原详细信息的努力主要集中在α连接的残基上,而不是末端残基的独特特征。唾液酸还原端在热力学上更倾向的异头构型是β型,其中[I]CO2-基团处于平伏键,OH([I]OH2)处于直立键,而对于所有其他残基,CO2-基团处于直立键。我们表明,这种据称微小的差异对还原端附近的α(2-8)-聚唾液酸结构有明显影响,因为β构型使[I]OH2处于与下一个残基([II]CO2-)的羧基形成氢键的有利位置。分子动力学(MD)模拟预测了这种氢键,我们随后通过核磁共振直接检测到了它。MD和剩余偶极耦合的结合表明,Sia2-βOH结构的最终结果是一种具有明确水合和电荷模式的稳定构象,并且与基于核磁共振欧沃豪斯效应(NOE)的羟基和脂肪族质子间距离实验结果一致。此外,我们提供证据表明,这种独特的构象在唾液酸寡糖上得以保留,从而构成了一种基序,该基序至少决定了聚合物前两个残基的α(2-8)-聚唾液酸的结构和动力学。我们提出一个假设,即这种结构基序揭示了一个长期存在的令人困惑的观察结果,即α(2-8)-聚唾液酸需要10个残基才能有效结合特定抗体,这比类似情况多大约四个单元。

相似文献

1
The β-reducing end in α(2-8)-polysialic acid constitutes a unique structural motif.
Glycobiology. 2017 Sep 1;27(9):900-911. doi: 10.1093/glycob/cwx025.
4
Inter-residual Hydrogen Bonding in Carbohydrates Unraveled by NMR Spectroscopy and Molecular Dynamics Simulations.
Chembiochem. 2019 Oct 1;20(19):2519-2528. doi: 10.1002/cbic.201900301. Epub 2019 Aug 28.
6
Complete structural elucidation of an oxidized polysialic acid drug intermediate by nuclear magnetic resonance spectroscopy.
Bioconjug Chem. 2014 Apr 16;25(4):665-76. doi: 10.1021/bc400456g. Epub 2014 Mar 28.
7
NMR study into the mechanism of recognition of the degree of polymerization by oligo/polysialic acid antibodies.
Bioorg Med Chem. 2013 Oct 1;21(19):6069-76. doi: 10.1016/j.bmc.2013.07.023. Epub 2013 Jul 29.
9
Polysialic acid is a cellular receptor for human adenovirus 52.
Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4264-E4273. doi: 10.1073/pnas.1716900115. Epub 2018 Apr 19.

引用本文的文献

1
Molecular Recognition Insights of Sialic Acid Glycans by Distinct Receptors Unveiled by NMR and Molecular Modeling.
Front Mol Biosci. 2021 Nov 15;8:727847. doi: 10.3389/fmolb.2021.727847. eCollection 2021.
2
The Incorporation of Labile Protons into Multidimensional NMR Analyses: Glycan Structures Revisited.
J Am Chem Soc. 2021 Jun 16;143(23):8935-8948. doi: 10.1021/jacs.1c04512. Epub 2021 Jun 4.
4
Predicting the Structures of Glycans, Glycoproteins, and Their Complexes.
Chem Rev. 2018 Sep 12;118(17):8005-8024. doi: 10.1021/acs.chemrev.8b00032. Epub 2018 Aug 9.
5
The capsule of .
Virulence. 2019 Dec;10(1):822-831. doi: 10.1080/21505594.2018.1431087. Epub 2018 Aug 1.

本文引用的文献

1
Glycan OH Exchange Rate Determination in Aqueous Solution: Seeking Evidence for Transient Hydrogen Bonds.
J Phys Chem B. 2017 Feb 2;121(4):683-695. doi: 10.1021/acs.jpcb.6b10594. Epub 2017 Jan 25.
2
NMR of glycans: shedding new light on old problems.
Prog Nucl Magn Reson Spectrosc. 2014 May;79:48-68. doi: 10.1016/j.pnmrs.2014.01.001. Epub 2014 Feb 14.
3
LR-HSQMBC: a sensitive NMR technique to probe very long-range heteronuclear coupling pathways.
J Org Chem. 2014 May 2;79(9):3887-94. doi: 10.1021/jo500333u. Epub 2014 Apr 18.
6
A perspective on the primary and three-dimensional structures of carbohydrates.
Carbohydr Res. 2013 Aug 30;378:123-32. doi: 10.1016/j.carres.2013.02.005. Epub 2013 Feb 24.
7
Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates.
J Magn Reson. 2013 Mar;228:130-5. doi: 10.1016/j.jmr.2013.01.001. Epub 2013 Jan 11.
9
Review: Use of residual dipolar couplings to determine the structure of carbohydrates.
Magn Reson Chem. 2012 Dec;50 Suppl 1:S80-5. doi: 10.1002/mrc.3888.
10
Evidence for helical structure in a tetramer of α2-8 sialic acid: unveiling a structural antigen.
J Am Chem Soc. 2012 Jul 4;134(26):10717-20. doi: 10.1021/ja300624j. Epub 2012 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验