School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
J Comput Chem. 2017 Jun 30;38(17):1495-1502. doi: 10.1002/jcc.24793. Epub 2017 Apr 1.
The development of optical multidimensional spectroscopic techniques has opened up new possibilities for the study of biological processes. Recently, ultrafast two-dimensional ultraviolet spectroscopy experiments have determined the rates of tryptophan → heme electron transfer and excitation energy transfer for the two tryptophan residues in myoglobin (Consani et al., Science, 2013, 339, 1586). Here, we show that accurate prediction of these rates can be achieved using Marcus theory in conjunction with time-dependent density functional theory. Key intermediate residues between the donor and acceptor are identified, and in particular the residues Val68 and Ile75 play a critical role in calculations of the electron coupling matrix elements. Our calculations demonstrate how small changes in structure can have a large effect on the rates, and show that the different rates of electron transfer are dictated by the distance between the heme and tryptophan residues, while for excitation energy transfer the orientation of the tryptophan residues relative to the heme is important. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
光学多维光谱技术的发展为生物过程的研究开辟了新的可能性。最近,超快二维紫外光谱实验已经确定了肌红蛋白中两个色氨酸残基的色氨酸→血红素电子转移和激发能量转移的速率(Consani 等人,《科学》,2013 年,339 卷,1586 页)。在这里,我们表明,使用马库斯理论结合含时密度泛函理论可以准确预测这些速率。确定了供体和受体之间的关键中间残基,特别是残基 Val68 和 Ile75 在计算电子耦合矩阵元中起着关键作用。我们的计算表明,结构的微小变化会对速率产生很大的影响,并表明电子转移的不同速率是由血红素和色氨酸残基之间的距离决定的,而对于激发能量转移,色氨酸残基相对于血红素的取向是重要的。© 2017 作者。《计算化学杂志》由 Wiley 期刊出版公司出版