通过应用马库斯理论直接进行能量转移动力学的计算测定。

Straightforward computational determination of energy-transfer kinetics through the application of the Marcus theory.

作者信息

Solé-Daura Albert, Maseras Feliu

机构信息

Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology Avgda. Països Catalans, 16 43007 Tarragona Spain

出版信息

Chem Sci. 2024 Aug 7;15(34):13650-8. doi: 10.1039/d4sc03352c.

Abstract

Energy transfer (EnT) photocatalysis holds the potential to revolutionize synthetic chemistry, unlocking the excited-state reactivity of non-chromophoric compounds indirect sensitization. This strategy gives access to synthetic routes to valuable molecular scaffolds that are otherwise inaccessible through ground-state pathways. Despite the promising nature of this chemistry, it still represents a largely uncharted area for computational chemistry, hindering the development of structure-activity relationships and design rules to rationally exploit the potential of EnT photocatalysis. Here, we examined the application of the classical Marcus theory in combination with DFT calculations as a convenient strategy to estimate the kinetics of EnT processes, focusing on the indirect sensitization of alkenes recently reported by Gilmour, Kerzig and co-workers for subsequent isomerization [Zähringer , , 2023, , 21576]. Our results demonstrate a remarkable capability of this approach to estimate free-energy barriers for EnT processes with high accuracy, yielding precise qualitative assessments and quantitative predictions with typical discrepancies of less than 2 kcal mol compared to experimental values and a small mean average error (MAE) of 1.2 kcal mol.

摘要

能量转移(EnT)光催化有潜力彻底改变合成化学,通过间接敏化开启非发色团化合物的激发态反应性。这种策略提供了通往有价值分子骨架的合成路线,而这些路线通过基态途径是无法获得的。尽管这种化学方法前景广阔,但对于计算化学来说,它在很大程度上仍是一个未知领域,这阻碍了结构 - 活性关系的发展以及合理利用EnT光催化潜力的设计规则。在此,我们研究了经典的马库斯理论与密度泛函理论(DFT)计算相结合的应用,作为一种估算EnT过程动力学的便捷策略,重点关注吉尔摩、克尔齐格及其同事最近报道的烯烃间接敏化后续异构化反应[扎林格,2023年,21576]。我们的结果表明,这种方法具有显著能力,能够高精度地估算EnT过程的自由能垒,与实验值相比,能产生精确的定性评估和定量预测,典型差异小于2千卡/摩尔,平均绝对误差(MAE)小至1.2千卡/摩尔。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecc8/11351515/93dc29e2d57e/d4sc03352c-f1.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索