Gando Ivan, Morganstein Jace, Jana Kundan, McDonald Thomas V, Tang Yingying, Coetzee William A
Pediatrics, NYU School of Medicine, New York, NY.
Department of Medicine, Albert Einstein College of Medicine, Bronx, NY.
Pacing Clin Electrophysiol. 2017 Jun;40(6):703-712. doi: 10.1111/pace.13087. Epub 2017 May 16.
Two genetic variants in SCN5A, encoding the Nav1.5 Na channel α-subunit, were found in a 5-month-old girl who died suddenly in her sleep. The first variant is a missense mutation, resulting in an amino acid change (Q1832E), which has been described (but not characterized) in a patient with Brugada syndrome. The second is a nonsense mutation that produces a premature stop codon and a C-terminal truncation (R1944Δ).
To investigate their functional relevance with patch clamp experiments in transfected HEK-293 cells. The Q1832E mutation drastically reduced Nav1.5 current density. The R1944Δ C-terminal truncation had negligible effects on Nav1.5 current density. Neither of the mutations affected the voltage dependence of steady activation and inactivation or influenced the late Na current or the recovery from inactivation. Biochemical and immunofluorescent approaches demonstrated that the Q1832E mutation caused severe trafficking defects. Polymerase chain reaction cloning and sequencing the victim's genomic DNA allowed us to determine that the two variants were in trans. We investigated the functional consequences by coexpressing Nav1.5(Q1832E) and Nav1.5(R1944Δ), which led to a significantly reduced current amplitude relative to wild-type.
These sudden infant death syndrome (SIDS)-related variants caused a severely dysfunctional Nav1.5 channel, which was mainly due to trafficking defects caused by the Q1832E mutation. The decreased current density is likely to be a major contributing factor to arrhythmogenesis in Brugada syndrome and the sudden death of this SIDS victim.
在一名5个月大的女童身上发现了编码Nav1.5钠通道α亚基的SCN5A基因的两种遗传变异,该女童在睡眠中突然死亡。第一种变异是错义突变,导致氨基酸改变(Q1832E),在一名Brugada综合征患者中已有描述(但未进行特征分析)。第二种是无义突变,产生过早的终止密码子和C末端截短(R1944Δ)。
通过在转染的HEK-293细胞中进行膜片钳实验来研究它们的功能相关性。Q1832E突变显著降低了Nav1.5电流密度。R1944Δ C末端截短对Nav1.5电流密度的影响可忽略不计。两种突变均未影响稳态激活和失活的电压依赖性,也未影响晚期钠电流或失活后的恢复。生化和免疫荧光方法表明,Q1832E突变导致严重的转运缺陷。通过聚合酶链反应克隆和对受害者基因组DNA进行测序,我们确定这两种变异是反式的。我们通过共表达Nav1.5(Q1832E)和Nav1.5(R1944Δ)来研究其功能后果,结果显示相对于野生型,电流幅度显著降低。
这些与婴儿猝死综合征(SIDS)相关的变异导致Nav1.5通道严重功能失调,这主要是由于Q1832E突变引起的转运缺陷。电流密度降低可能是Brugada综合征心律失常发生以及该SIDS受害者猝死的主要促成因素。