Suppr超能文献

流感嗜血杆菌中甲氧苄啶耐药性的分子克隆及机制

Molecular cloning and mechanism of trimethoprim resistance in Haemophilus influenzae.

作者信息

de Groot R, Campos J, Moseley S L, Smith A L

机构信息

Division of Infectious Disease, Children's Hospital and Medical Center, Seattle, Washington.

出版信息

Antimicrob Agents Chemother. 1988 Apr;32(4):477-84. doi: 10.1128/AAC.32.4.477.

Abstract

We studied 10 trimethoprim-resistant (Tmpr) Haemophilus influenzae isolates for which agar dilution MICs were 10 to greater than 200 micrograms/ml. Trimethoprim resistance was transferred from two Tmpr H. influenzae isolates to a Tmps strain by conjugation or transformation. Wild-type Tmpr strains and Tmpr transcipients did not contain detectable plasmid DNA. The trimethoprim resistance gene was cloned into a cosmid vector, and recombinant plasmids were transduced into Escherichia coli. A 0.50-kilobase intragenic probe derived from a 12.9-kilobase fragment which encoded trimethoprim resistance hybridized with whole-cell DNA from Tmps and Tmpr strains. Southern blot analysis of restricted DNA from isogenic Tmps and Tmpr H. influenzae indicated that acquisition of trimethoprim resistance involved a rearrangement or change in nucleotide sequence. Hybridization was not seen with DNA derived from Tmpr E. coli containing dihydrofolate reductase I, II, and III genes or with Tmpr Neisseria meningitidis, Neisseria gonorrhoeae, and Pseudomonas cepacia. Southern hybridization with 12 multiply resistant encapsulated H. influenzae strains confirmed that the trimethoprim resistance gene was chromosomally mediated. Dihydrofolate reductase activity was significantly greater in cell sonicate supernatants of Tmpr strains in comparison with isogenic Tmps recipients. Differences were not found in the trimethoprim inhibition profile of dihydrofolate reductase activity in Tmps and Tmpr strains. We conclude that the mechanism of trimethoprim resistance in H. influenzae is overproduction of chromosomally located dihydrofolate reductase.

摘要

我们研究了10株对甲氧苄啶耐药(Tmpr)的流感嗜血杆菌分离株,其琼脂稀释法测定的最低抑菌浓度(MIC)为10至大于200微克/毫升。通过接合或转化将甲氧苄啶耐药性从两株Tmpr流感嗜血杆菌分离株转移至一株甲氧苄啶敏感(Tmps)菌株。野生型Tmpr菌株和Tmpr转导子未检测到质粒DNA。将甲氧苄啶耐药基因克隆到黏粒载体中,并将重组质粒转导至大肠杆菌。从一个编码甲氧苄啶耐药性的12.9千碱基片段中获得的一个0.50千碱基的基因内探针与Tmps和Tmpr菌株的全细胞DNA杂交。对同基因的Tmps和Tmpr流感嗜血杆菌限制性DNA的Southern印迹分析表明,获得甲氧苄啶耐药性涉及核苷酸序列的重排或改变。未观察到与含有二氢叶酸还原酶I、II和III基因的Tmpr大肠杆菌或与Tmpr脑膜炎奈瑟菌、淋病奈瑟菌和洋葱伯克霍尔德菌的DNA杂交。与12株多重耐药的有荚膜流感嗜血杆菌菌株的Southern杂交证实,甲氧苄啶耐药基因是由染色体介导的。与同基因的Tmps受体相比,Tmpr菌株细胞超声破碎上清液中的二氢叶酸还原酶活性显著更高。在Tmps和Tmpr菌株中,未发现甲氧苄啶对二氢叶酸还原酶活性抑制谱的差异。我们得出结论,流感嗜血杆菌中甲氧苄啶耐药的机制是染色体定位的二氢叶酸还原酶过量产生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e18/172205/31b164dcf938/aac00083-0091-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验