Suppr超能文献

受弹性环境约束的粘性系统中的分割

Segmentation in cohesive systems constrained by elastic environments.

作者信息

Novak I, Truskinovsky L

机构信息

Department of Cell Biology, University of Connecticut, Farmington, CT 06030, USA.

Physique et Mécanique des Milieux Hétérogènes, CNRS-UMR 7636, PSL, ESPCI, 10 Rue Vauquelin, 75005 Paris, France

出版信息

Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093). doi: 10.1098/rsta.2016.0160.

Abstract

The complexity of fracture-induced segmentation in elastically constrained cohesive (fragile) systems originates from the presence of competing interactions. The role of discreteness in such phenomena is of interest in a variety of fields, from hierarchical self-assembly to developmental morphogenesis. In this paper, we study the analytically solvable example of segmentation in a breakable mass-spring chain elastically linked to a deformable lattice structure. We explicitly construct the complete set of local minima of the energy in this prototypical problem and identify among them the states corresponding to the global energy minima. We show that, even in the continuum limit, the dependence of the segmentation topology on the stretching/pre-stress parameter in this problem takes the form of a devil's type staircase. The peculiar nature of this staircase, characterized by locking in rational microstructures, is of particular importance for biological applications, where its structure may serve as an explanation of the robustness of stress-driven segmentation.This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

摘要

在弹性约束的内聚(易碎)系统中,骨折诱导分割的复杂性源于竞争相互作用的存在。离散性在这类现象中的作用在从分层自组装到发育形态发生的各种领域都备受关注。在本文中,我们研究了一个与可变形晶格结构弹性相连的易碎质量 - 弹簧链中的分割问题,该问题具有解析解。我们明确构建了这个典型问题中能量局部极小值的完整集合,并在其中识别出对应全局能量极小值的状态。我们表明,即使在连续极限情况下,该问题中分割拓扑对拉伸/预应力参数的依赖呈现出魔鬼阶梯的形式。这种阶梯的特殊性质,其特点是锁定在有理微结构中,对于生物学应用尤为重要,在生物学中其结构可用于解释应力驱动分割的稳健性。本文是主题为“通过复杂介质中的不稳定性进行图案化:理论与应用”的特刊的一部分。

相似文献

1
Segmentation in cohesive systems constrained by elastic environments.受弹性环境约束的粘性系统中的分割
Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093). doi: 10.1098/rsta.2016.0160.
2
Discovery of electric devil's staircase in perovskite antiferroelectric.在钙钛矿反铁电体中发现电恶魔阶梯
Sci Adv. 2022 Apr 8;8(14):eabl9088. doi: 10.1126/sciadv.abl9088. Epub 2022 Apr 6.
8
Electron climbing a "devil's staircase" in wave-particle interaction.电子在波粒相互作用中攀爬“魔鬼阶梯”。
Phys Rev Lett. 2005 Dec 31;95(26):264102. doi: 10.1103/PhysRevLett.95.264102. Epub 2005 Dec 23.
9
The dynamics of folding instability in a constrained Cosserat medium.约束柯西拉介质中折叠不稳定性的动力学
Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093). doi: 10.1098/rsta.2016.0159.
10
Devil's staircase in kinetically limited growth.动力学受限生长中的魔鬼阶梯
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 1):041605. doi: 10.1103/PhysRevE.66.041605. Epub 2002 Oct 14.

引用本文的文献

本文引用的文献

1
Elastocapillary coalescence of plates and pillars.板和柱的弹性毛细管聚结
Proc Math Phys Eng Sci. 2015 Mar 8;471(2175):20140593. doi: 10.1098/rspa.2014.0593.
2
The role of mechanical forces in plant morphogenesis.机械力在植物形态发生中的作用。
Annu Rev Plant Biol. 2011;62:365-85. doi: 10.1146/annurev-arplant-042110-103852.
4
Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams.二维蜂窝状碳纳米管泡沫的毛细作用驱动组装。
Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4009-12. doi: 10.1073/pnas.0400734101. Epub 2004 Mar 11.
6
Two scaling domains in multiple cracking phenomena.多重开裂现象中的两个标度域。
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Dec;62(6 Pt A):7807-10. doi: 10.1103/physreve.62.7807.
7
Patterns and scaling in surface fragmentation processes.表面破碎过程中的模式与标度
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Oct;54(4):4293-4298. doi: 10.1103/physreve.54.4293.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验