Wei Z, Schneider T M, Kim J, Kim H-Y, Aizenberg J, Mahadevan L
School of Engineering and Applied Sciences , Wyss Institute for Bio-inspired Engineering, Harvard University , Cambridge, MA 02138, USA.
School of Engineering and Applied Sciences , Wyss Institute for Bio-inspired Engineering, Harvard University , Cambridge, MA 02138, USA ; Emergent Complexity in Physical Systems Laboratory (ECPS) , École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland.
Proc Math Phys Eng Sci. 2015 Mar 8;471(2175):20140593. doi: 10.1098/rspa.2014.0593.
When a fluid-immersed array of supported plates or pillars is dried, evaporation leads to the formation of menisci on the tips of the plates or pillars that bring them together to form complex patterns. Building on prior experimental observations, we use a combination of theory and computation to understand the nature of this instability and its evolution in both the two- and three-dimensional setting of the problem. For the case of plates, we explicitly derive the interaction torques based on the relevant physical parameters associated with pillar deformation, contact-line pinning/depinning and fluid volume changes. A Bloch-wave analysis for our periodic mechanical system captures the window of volumes where the two-plate eigenvalue characterizes the onset of the coalescence instability. We then study the evolution of these binary clusters and their eventual elastic arrest using numerical simulations that account for evaporative dynamics coupled to capillary coalescence. This explains both the formation of hierarchical clusters and the sensitive dependence of the final structures on initial perturbations, as seen in our experiments. We then generalize our analysis to treat the problem of pillar collapse in three dimensions, where the fluid domain is completely connected and the interface is a minimal surface with the uniform mean curvature. Our theory and simulations capture the salient features of experimental observations in a range of different situations and may thus be useful in controlling the ensuing patterns.
当浸没在流体中的支撑板或支柱阵列干燥时,蒸发会导致在板或支柱的尖端形成弯月面,使它们聚集在一起形成复杂的图案。基于先前的实验观察,我们结合理论和计算来理解这种不稳定性的本质及其在问题的二维和三维设置中的演变。对于板的情况,我们根据与支柱变形、接触线钉扎/解钉以及流体体积变化相关的物理参数明确推导相互作用扭矩。对我们的周期性机械系统进行布洛赫波分析,捕捉到两板特征值表征聚结不稳定性开始的体积窗口。然后,我们使用考虑蒸发动力学与毛细管聚结耦合的数值模拟来研究这些二元簇的演变及其最终的弹性停滞。这解释了分层簇的形成以及最终结构对初始扰动的敏感依赖性,正如我们在实验中所看到的那样。然后,我们将分析推广到处理三维支柱坍塌问题,其中流体域完全连通,界面是具有均匀平均曲率的最小表面。我们的理论和模拟捕捉了一系列不同情况下实验观察的显著特征,因此可能有助于控制后续的图案。