Riccobelli D, Ciarletta P
MOX-Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
MOX-Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093). doi: 10.1098/rsta.2016.0421.
This work investigates the morphological stability of a soft body composed of two heavy elastic layers attached to a rigid surface and subjected only to the bulk gravity force. Using theoretical and computational tools, we characterize the selection of different patterns as well as their nonlinear evolution, unveiling the interplay between elastic and geometric effects for their formation. Unlike similar gravity-induced shape transitions in fluids, such as the Rayleigh-Taylor instability, we prove that the nonlinear elastic effects saturate the dynamic instability of the bifurcated solutions, displaying a rich morphological diagram where both digitations and stable wrinkling can emerge. The results of this work provide important guidelines for the design of novel soft systems with tunable shapes, with several applications in engineering sciences.This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'
本研究探讨了一个由附着在刚性表面上的两个重弹性层组成的软体的形态稳定性,该软体仅受体积重力作用。利用理论和计算工具,我们表征了不同图案的选择及其非线性演化,揭示了弹性和几何效应在其形成过程中的相互作用。与流体中类似的重力诱导形状转变(如瑞利 - 泰勒不稳定性)不同,我们证明非线性弹性效应使分叉解的动态不稳定性饱和,展现出一个丰富的形态图,其中指状化和稳定的皱纹都可能出现。这项工作的结果为设计具有可调形状的新型软系统提供了重要指导,在工程科学中有多种应用。本文是主题为“复杂介质中通过不稳定性进行图案化:理论与应用”特刊的一部分。