Suppr超能文献

软弹性固体中的法拉第波。

Faraday waves in soft elastic solids.

作者信息

Bevilacqua Giulia, Shao Xingchen, Saylor John R, Bostwick Joshua B, Ciarletta Pasquale

机构信息

MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, Italy.

Department of Mechanical Engineering, Clemson University, Clemson, SC, USA.

出版信息

Proc Math Phys Eng Sci. 2020 Sep;476(2241):20200129. doi: 10.1098/rspa.2020.0129. Epub 2020 Sep 30.

Abstract

Recent experiments have observed the emergence of standing waves at the free surface of elastic bodies attached to a rigid oscillating substrate and subjected to critical values of forcing frequency and amplitude. This phenomenon, known as Faraday instability, is now well understood for viscous fluids but surprisingly eluded any theoretical explanation for soft solids. Here, we characterize Faraday waves in soft incompressible slabs using the Floquet theory to study the onset of harmonic and subharmonic resonance eigenmodes. We consider a ground state corresponding to a finite homogeneous deformation of the elastic slab. We transform the incremental boundary value problem into an algebraic eigenvalue problem characterized by the three dimensionless parameters, that characterize the interplay of gravity, capillary and elastic waves. Remarkably, we found that Faraday instability in soft solids is characterized by a harmonic resonance in the physical range of the material parameters. This seminal result is in contrast to the subharmonic resonance that is known to characterize viscous fluids, and opens the path for using Faraday waves for a precise and robust experimental method that is able to distinguish solid-like from fluid-like responses of soft matter at different scales.

摘要

最近的实验观察到,在附着于刚性振荡基底的弹性体自由表面上,当受到强迫频率和振幅的临界值作用时,会出现驻波。这种现象被称为法拉第不稳定性,目前对于粘性流体已得到很好的理解,但令人惊讶的是,对于软固体却尚未有任何理论解释。在此,我们利用弗洛凯理论对软不可压缩平板中的法拉第波进行表征,以研究谐波和次谐波共振本征模的起始情况。我们考虑一种对应于弹性平板有限均匀变形的基态。我们将增量边值问题转化为一个代数特征值问题,该问题由三个无量纲参数表征,这些参数描述了重力、毛细作用和弹性波之间的相互作用。值得注意的是,我们发现软固体中的法拉第不稳定性在材料参数的物理范围内以谐波共振为特征。这一开创性的结果与已知表征粘性流体的次谐波共振形成对比,并为利用法拉第波开发一种精确且稳健的实验方法开辟了道路,该方法能够在不同尺度上区分软物质的类固体响应和类流体响应。

相似文献

1
Faraday waves in soft elastic solids.软弹性固体中的法拉第波。
Proc Math Phys Eng Sci. 2020 Sep;476(2241):20200129. doi: 10.1098/rspa.2020.0129. Epub 2020 Sep 30.
4
Faraday wave lattice as an elastic metamaterial.作为弹性超材料的法拉第波晶格。
Phys Rev E. 2016 May;93(5):050202. doi: 10.1103/PhysRevE.93.050202. Epub 2016 May 19.
6
Weakly nonlinear analysis of impulsively-forced Faraday waves.脉冲强迫法拉第波的弱非线性分析
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 2):056212. doi: 10.1103/PhysRevE.72.056212. Epub 2005 Nov 17.
9
Parametrically excited surface waves: two-frequency forcing, normal form symmetries, and pattern selection.参数激励表面波:双频驱动、范式对称性与模式选择。
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 May;59(5 Pt B):5446-56. doi: 10.1103/physreve.59.5446.
10
Experimental observation of Faraday waves in soft gels.软凝胶中法拉第波的实验观察
Phys Rev E. 2020 Dec;102(6-1):060602. doi: 10.1103/PhysRevE.102.060602.

引用本文的文献

本文引用的文献

2
Rayleigh-Taylor instability in soft elastic layers.软弹性层中的瑞利-泰勒不稳定性。
Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093). doi: 10.1098/rsta.2016.0421.
3
Gravity driven instability in elastic solid layers.弹性固体层中的重力驱动不稳定性。
Phys Rev Lett. 2014 Oct 24;113(17):178301. doi: 10.1103/PhysRevLett.113.178301. Epub 2014 Oct 21.
4
Solid drops: large capillary deformations of immersed elastic rods.固体液滴:浸入弹性棒的大毛细管变形。
Phys Rev Lett. 2013 Sep 13;111(11):114301. doi: 10.1103/PhysRevLett.111.114301. Epub 2013 Sep 10.
6
Capillarity driven instability of a soft solid.毛细作用驱动软固体的不稳定性。
Phys Rev Lett. 2010 Nov 19;105(21):214301. doi: 10.1103/PhysRevLett.105.214301. Epub 2010 Nov 17.
8
Faraday instability: Linear analysis for viscous fluids.法拉第不稳定性:粘性流体的线性分析
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Feb;51(2):1162-1168. doi: 10.1103/physreve.51.1162.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验