Vangaveti S, D'Esposito R J, Lippens J L, Fabris D, Ranganathan S V
The RNA Institute, University at Albany, NY, USA.
Phys Chem Chem Phys. 2017 Jun 14;19(23):14937-14946. doi: 10.1039/c7cp00717e.
Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS) is a rapidly emerging tool for the investigation of nucleic acid structure and dynamics. IMS-MS determinations can provide valuable information regarding alternative topologies, folding intermediates, and conformational heterogeneities, which are not readily accessible to other analytical techniques. The leading strategies for data interpretation rely on computational and experimental approaches to correctly assign experimental observations to putative structures. A very effective strategy involves the application of molecular dynamics (MD) simulations to predict the structure of the analyte molecule, calculate its collision cross section (CCS), and then compare this computational value with the corresponding experimental data. While this approach works well for small nucleic acid species, analyzing larger nucleic acids of biological interest is hampered by the computational cost associated with capturing their extensive structure and dynamics in all-atom detail. In this report, we describe the implementation of a coarse graining (CG) approach to reduce the cost of the computational methods employed in the data interpretation workflow. Our framework employs a five-bead model to accurately represent each nucleotide in the nucleic acid structure. The beads are appropriately parameterized to enable the direct calculation of CCS values from CG models, thus affording the ability to pursue the analysis of larger, highly dynamic constructs. The validity of this approach was successfully confirmed by the excellent correlation between the CCS values obtained in parallel by all-atom and CG workflows.
离子淌度光谱-质谱联用(IMS-MS)是一种迅速兴起的用于研究核酸结构和动力学的工具。IMS-MS测定能够提供有关替代拓扑结构、折叠中间体和构象异质性的有价值信息,而这些信息是其他分析技术难以获取的。数据解释的主要策略依赖于计算和实验方法,以便将实验观察结果正确地归因于假定的结构。一种非常有效的策略是应用分子动力学(MD)模拟来预测分析物分子的结构,计算其碰撞截面(CCS),然后将这个计算值与相应的实验数据进行比较。虽然这种方法对小核酸物种效果良好,但分析具有生物学意义的较大核酸时,由于在全原子细节上捕捉其广泛结构和动力学所涉及的计算成本而受到阻碍。在本报告中,我们描述了一种粗粒度(CG)方法的实施,以降低数据解释工作流程中所采用计算方法的成本。我们的框架采用五珠模型来准确表示核酸结构中的每个核苷酸。对这些珠子进行适当的参数化,以便能够直接从CG模型计算CCS值,从而有能力对更大、高度动态的结构进行分析。通过全原子和CG工作流程并行获得的CCS值之间的出色相关性,成功证实了这种方法的有效性。