Pang Qiang, Gao Yu, Zhao Yingying, Ju Yanming, Qiu Hailong, Wei Yingjin, Liu Bingbing, Zou Bo, Du Fei, Chen Gang
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China.
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China.
Chemistry. 2017 May 23;23(29):7074-7080. doi: 10.1002/chem.201700542. Epub 2017 May 11.
An integrated WS @CMK-3 nanocomposite has been prepared by a one-step hydrothermal method and then used as the anode material for lithium-ion and sodium-ion batteries. Ultrathin WS nanosheets have been successfully embedded into the ordered mesoporous carbon (CMK-3) framework. Owing to the few-layered nanostructure of WS , as well as the high electronic conductivity and the volume confinement effect of CMK-3, the material shows larger discharge capacity, better rate capability, and improved cycle stability than pristine WS . When tested in lithium-ion batteries, the material delivers a reversible capacity of 720 mA h g after 100 cycles at a current density of 100 mA g . A large discharge capacity of 307 mA h g is obtained at a current density of 2 A g . When used in sodium-ion batteries, the material exhibits a capacity of 333 mA h g at 100 mA g without capacity fading after 70 cycles. A discharge capacity of 230 mA h g is obtained at 2 A g . This excellent performance demonstrates that the WS @CMK-3 nanocomposite has great potential as a high-performance anode material for next-generation rechargeable batteries.
通过一步水热法制备了一种集成的WS@CMK-3纳米复合材料,然后将其用作锂离子和钠离子电池的负极材料。超薄WS纳米片已成功嵌入有序介孔碳(CMK-3)骨架中。由于WS的少层纳米结构,以及CMK-3的高电子导电性和体积限制效应,该材料比原始WS表现出更大的放电容量、更好的倍率性能和更高的循环稳定性。在锂离子电池中测试时,该材料在100 mA g的电流密度下循环100次后,可逆容量为720 mA h g。在2 A g的电流密度下,可获得307 mA h g的大放电容量。当用于钠离子电池时,该材料在100 mA g下容量为333 mA h g,70次循环后无容量衰减。在2 A g下可获得230 mA h g的放电容量。这种优异的性能表明,WS@CMK-3纳米复合材料作为下一代可充电电池的高性能负极材料具有巨大潜力。