Suppr超能文献

利用新兵入伍初期的自我报告调查数据,为美国陆军新兵开发多结局风险预测模型。

Using self-report surveys at the beginning of service to develop multi-outcome risk models for new soldiers in the U.S. Army.

机构信息

Department of Health Care Policy,Harvard Medical School,Boston, Massachusetts,USA.

Departments of Psychiatry and Family Medicine & Public Health,University of California San Diego,La Jolla, California,USA.

出版信息

Psychol Med. 2017 Oct;47(13):2275-2287. doi: 10.1017/S003329171700071X. Epub 2017 Apr 4.

Abstract

BACKGROUND

The U.S. Army uses universal preventives interventions for several negative outcomes (e.g. suicide, violence, sexual assault) with especially high risks in the early years of service. More intensive interventions exist, but would be cost-effective only if targeted at high-risk soldiers. We report results of efforts to develop models for such targeting from self-report surveys administered at the beginning of Army service.

METHODS

21 832 new soldiers completed a self-administered questionnaire (SAQ) in 2011-2012 and consented to link administrative data to SAQ responses. Penalized regression models were developed for 12 administratively-recorded outcomes occurring by December 2013: suicide attempt, mental hospitalization, positive drug test, traumatic brain injury (TBI), other severe injury, several types of violence perpetration and victimization, demotion, and attrition.

RESULTS

The best-performing models were for TBI (AUC = 0.80), major physical violence perpetration (AUC = 0.78), sexual assault perpetration (AUC = 0.78), and suicide attempt (AUC = 0.74). Although predicted risk scores were significantly correlated across outcomes, prediction was not improved by including risk scores for other outcomes in models. Of particular note: 40.5% of suicide attempts occurred among the 10% of new soldiers with highest predicted risk, 57.2% of male sexual assault perpetrations among the 15% with highest predicted risk, and 35.5% of female sexual assault victimizations among the 10% with highest predicted risk.

CONCLUSIONS

Data collected at the beginning of service in self-report surveys could be used to develop risk models that define small proportions of new soldiers accounting for high proportions of negative outcomes over the first few years of service.

摘要

背景

美国陆军对几种负面结果(例如自杀、暴力、性侵犯)使用通用预防干预措施,这些结果在服役初期的风险特别高。虽然存在更密集的干预措施,但只有针对高风险士兵才具有成本效益。我们报告了从在陆军服役初期进行的自我报告调查中开发此类目标定位模型的结果。

方法

21832 名新兵在 2011-2012 年完成了一份自我管理问卷(SAQ),并同意将行政数据与 SAQ 响应相关联。对于 2013 年 12 月前发生的 12 种行政记录的结果,开发了惩罚回归模型:自杀企图、精神住院、药物检测阳性、创伤性脑损伤(TBI)、其他严重伤害、几种类型的暴力行为和受害、降级和流失。

结果

表现最佳的模型是 TBI(AUC=0.80)、主要身体暴力行为(AUC=0.78)、性侵犯行为(AUC=0.78)和自杀企图(AUC=0.74)。虽然预测风险评分在不同结果之间具有显著相关性,但在模型中包含其他结果的风险评分并不能提高预测能力。值得注意的是:自杀企图的 40.5%发生在预测风险最高的新兵的 10%中,男性性侵犯行为的 57.2%发生在预测风险最高的新兵的 15%中,女性性侵犯受害的 35.5%发生在预测风险最高的新兵的 10%中。

结论

在自我报告调查中收集的服务初期数据可用于开发风险模型,这些模型可以定义一小部分新兵,他们在服役的头几年内占负面结果的很大比例。

相似文献

引用本文的文献

5
Predicting correlated outcomes from molecular data.从分子数据预测相关结果。
Bioinformatics. 2021 Nov 5;37(21):3889-3895. doi: 10.1093/bioinformatics/btab576.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验