Suppr超能文献

通过向行政数据中添加自我报告调查数据来提高美国陆军新兵的风险预测准确性。

Improving risk prediction accuracy for new soldiers in the U.S. Army by adding self-report survey data to administrative data.

机构信息

Department of Psychology, Harvard University, Cambridge, MA, USA.

Department of Health Care Policy, Harvard Medical School, Boston, MA, USA.

出版信息

BMC Psychiatry. 2018 Apr 3;18(1):87. doi: 10.1186/s12888-018-1656-4.

Abstract

BACKGROUND

High rates of mental disorders, suicidality, and interpersonal violence early in the military career have raised interest in implementing preventive interventions with high-risk new enlistees. The Army Study to Assess Risk and Resilience in Servicemembers (STARRS) developed risk-targeting systems for these outcomes based on machine learning methods using administrative data predictors. However, administrative data omit many risk factors, raising the question whether risk targeting could be improved by adding self-report survey data to prediction models. If so, the Army may gain from routinely administering surveys that assess additional risk factors.

METHODS

The STARRS New Soldier Survey was administered to 21,790 Regular Army soldiers who agreed to have survey data linked to administrative records. As reported previously, machine learning models using administrative data as predictors found that small proportions of high-risk soldiers accounted for high proportions of negative outcomes. Other machine learning models using self-report survey data as predictors were developed previously for three of these outcomes: major physical violence and sexual violence perpetration among men and sexual violence victimization among women. Here we examined the extent to which this survey information increases prediction accuracy, over models based solely on administrative data, for those three outcomes. We used discrete-time survival analysis to estimate a series of models predicting first occurrence, assessing how model fit improved and concentration of risk increased when adding the predicted risk score based on survey data to the predicted risk score based on administrative data.

RESULTS

The addition of survey data improved prediction significantly for all outcomes. In the most extreme case, the percentage of reported sexual violence victimization among the 5% of female soldiers with highest predicted risk increased from 17.5% using only administrative predictors to 29.4% adding survey predictors, a 67.9% proportional increase in prediction accuracy. Other proportional increases in concentration of risk ranged from 4.8% to 49.5% (median = 26.0%).

CONCLUSIONS

Data from an ongoing New Soldier Survey could substantially improve accuracy of risk models compared to models based exclusively on administrative predictors. Depending upon the characteristics of interventions used, the increase in targeting accuracy from survey data might offset survey administration costs.

摘要

背景

军人职业生涯早期精神障碍、自杀意念和人际暴力的发生率较高,这引起了人们对为高风险新兵实施预防干预措施的兴趣。陆军风险评估和军人适应力研究(STARRS)使用机器学习方法基于行政数据预测因子开发了针对这些结果的风险目标系统。然而,行政数据遗漏了许多风险因素,这就提出了一个问题,即通过向预测模型中添加自我报告调查数据,是否可以提高风险目标定位的准确性。如果是这样,陆军可能会受益于常规管理评估其他风险因素的调查。

方法

STARRS 新兵调查对 21790 名同意将调查数据与行政记录相联系的正规军士兵进行了调查。如前所述,使用行政数据作为预测因子的机器学习模型发现,少数高风险士兵占负面结果的很大比例。先前还为这三个结果中的三个开发了使用自我报告调查数据作为预测因子的其他机器学习模型:男性的主要身体暴力和性暴力实施以及女性的性暴力受害。在这里,我们检查了这些调查信息在多大程度上提高了对这些三个结果的预测准确性,而不仅仅是基于行政数据的模型。我们使用离散时间生存分析来估计一系列预测首次发生的模型,评估当将基于调查数据的预测风险评分添加到基于行政数据的预测风险评分时,模型拟合如何改善,以及风险集中程度如何增加。

结果

所有结果的预测都因添加调查数据而显著提高。在最极端的情况下,仅使用行政预测因子,预测风险最高的 5%女性士兵中报告的性暴力受害比例从 17.5%增加到 29.4%,添加调查预测因子,预测准确性提高了 67.9%。风险集中程度的其他比例增加范围从 4.8%到 49.5%(中位数=26.0%)。

结论

与仅基于行政预测因子的模型相比,来自正在进行的新兵调查的数据可以大大提高风险模型的准确性。取决于干预措施的特点,从调查数据中提高目标定位的准确性可能会抵消调查管理成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a673/5883887/c85af092d668/12888_2018_1656_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验