Suppr超能文献

一种与现有 CMOS 技术兼容的可靠可控石墨烯掺杂方法及其器件应用的演示。

A reliable and controllable graphene doping method compatible with current CMOS technology and the demonstration of its device applications.

机构信息

Department of Physics, Sejong University, Seoul, 143-747, Republic of Korea.

出版信息

Nanotechnology. 2017 Apr 28;28(17):175710. doi: 10.1088/1361-6528/aa6537.

Abstract

The modulation of charge carrier concentration allows us to tune the Fermi level (E ) of graphene thanks to the low electronic density of states near the E . The introduced metal oxide thin films as well as the modified transfer process can elaborately maneuver the amounts of charge carrier concentration in graphene. The self-encapsulation provides a solution to overcome the stability issues of metal oxide hole dopants. We have manipulated systematic graphene p-n junction structures for electronic or photonic application-compatible doping methods with current semiconducting process technology. We have demonstrated the anticipated transport properties on the designed heterojunction devices with non-destructive doping methods. This mitigates the device architecture limitation imposed in previously known doping methods. Furthermore, we employed E -modulated graphene source/drain (S/D) electrodes in a low dimensional transition metal dichalcogenide field effect transistor (TMDFET). We have succeeded in fulfilling n-type, ambipolar, or p-type field effect transistors (FETs) by moving around only the graphene work function. Besides, the graphene/transition metal dichalcogenide (TMD) junction in either both p- and n-type transistor reveals linear voltage dependence with the enhanced contact resistance. We accomplished the complete conversion of p-/n-channel transistors with S/D tunable electrodes. The E modulation using metal oxide facilitates graphene to access state-of-the-art complimentary-metal-oxide-semiconductor (CMOS) technology.

摘要

通过在费米能级(E )附近引入金属氧化物薄膜以及改进的转移工艺,可以精细地调节石墨烯中的载流子浓度。载流子浓度的调制允许我们调整石墨烯的费米能级(E ),这要归功于其在 E 附近的低电子态密度。自封装为克服金属氧化物空穴掺杂剂的稳定性问题提供了一种解决方案。我们已经通过当前的半导体工艺技术,对电子或光子应用兼容的掺杂方法,对系统的石墨烯 p-n 结结构进行了操控。我们已经用无损掺杂方法,在设计的异质结器件上演示了预期的输运性能。这减轻了以前已知的掺杂方法所施加的器件架构限制。此外,我们在低维过渡金属二卤化物场效应晶体管(TMDFET)中采用了 E 调制的石墨烯源/漏(S/D)电极。我们通过仅移动石墨烯的功函数,成功实现了 n 型、双极性或 p 型场效应晶体管(FET)。此外,在 p 型和 n 型晶体管中,石墨烯/过渡金属二卤化物(TMD)结均呈现出线性的电压依赖性,同时增强了接触电阻。我们通过可调 S/D 电极完成了 p-/n 通道晶体管的完全转换。利用金属氧化物进行 E 调制使得石墨烯能够应用于最先进的互补金属氧化物半导体(CMOS)技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验