Suppr超能文献

无表面活性剂的金纳米颗粒的形状控制:由纳米晶体合成的统一理论框架实现。

Surfactant-Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis.

机构信息

Department of Radiology and Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, NY, 10065, USA.

Department of Chemistry, Hunter College and the Graduate Center, City University of New York, NY, 10016, USA.

出版信息

Adv Mater. 2017 Jun;29(21). doi: 10.1002/adma.201605622. Epub 2017 Apr 4.

Abstract

Gold nanoparticles have unique properties that are highly dependent on their shape and size. Synthetic methods that enable precise control over nanoparticle morphology currently require shape-directing agents such as surfactants or polymers that force growth in a particular direction by adsorbing to specific crystal facets. These auxiliary reagents passivate the nanoparticles' surface, and thus decrease their performance in applications like catalysis and surface-enhanced Raman scattering. Here, a surfactant- and polymer-free approach to achieving high-performance gold nanoparticles is reported. A theoretical framework to elucidate the growth mechanism of nanoparticles in surfactant-free media is developed and it is applied to identify strategies for shape-controlled syntheses. Using the results of the analyses, a simple, green-chemistry synthesis of the four most commonly used morphologies: nanostars, nanospheres, nanorods, and nanoplates is designed. The nanoparticles synthesized by this method outperform analogous particles with surfactant and polymer coatings in both catalysis and surface-enhanced Raman scattering.

摘要

金纳米粒子具有独特的性质,其性质高度依赖于其形状和尺寸。目前,能够精确控制纳米粒子形态的合成方法需要使用形状导向剂,例如表面活性剂或聚合物,这些试剂通过吸附在特定的晶面上来迫使生长朝特定的方向进行。这些辅助试剂会使纳米粒子的表面钝化,从而降低它们在催化和表面增强拉曼散射等应用中的性能。本文报道了一种无需使用表面活性剂和聚合物即可获得高性能金纳米粒子的方法。开发了一个理论框架来阐明在无表面活性剂介质中纳米粒子的生长机制,并将其应用于确定具有形状可控合成的策略。利用分析结果,设计了一种简单、绿色化学的方法来合成最常用的四种形态的纳米粒子:纳米星、纳米球、纳米棒和纳米板。通过这种方法合成的纳米粒子在催化和表面增强拉曼散射方面均优于具有表面活性剂和聚合物涂层的类似粒子。

相似文献

4
A Mechanism for Symmetry Breaking and Shape Control in Single-Crystal Gold Nanorods.
Acc Chem Res. 2017 Dec 19;50(12):2925-2935. doi: 10.1021/acs.accounts.7b00313. Epub 2017 Nov 16.
6
Shape-dependent cytotoxicity and cellular uptake of gold nanoparticles synthesized using green tea extract.
Nanoscale Res Lett. 2019 Apr 11;14(1):129. doi: 10.1186/s11671-019-2967-1.
7
The gold standard: gold nanoparticle libraries to understand the nano-bio interface.
Acc Chem Res. 2013 Mar 19;46(3):650-61. doi: 10.1021/ar300015b. Epub 2012 Jun 25.
8
Virus-Sized Gold Nanorods: Plasmonic Particles for Biology.
Acc Chem Res. 2019 Aug 20;52(8):2124-2135. doi: 10.1021/acs.accounts.9b00288. Epub 2019 Aug 2.
9
Multiparametric Assessment of Gold Nanoparticle Cytotoxicity in Cancerous and Healthy Cells: The Role of Size, Shape, and Surface Chemistry.
Bioconjug Chem. 2017 Feb 15;28(2):449-460. doi: 10.1021/acs.bioconjchem.6b00605. Epub 2017 Jan 6.
10
Single-parameter-tuned synthesis for shape-controlled gold nanocrystals stimulated by iron carbonyl.
J Colloid Interface Sci. 2021 Nov;601:773-781. doi: 10.1016/j.jcis.2021.05.114. Epub 2021 May 29.

引用本文的文献

1
Gold Nanoparticles for Retinal Molecular Optical Imaging.
Int J Mol Sci. 2024 Aug 28;25(17):9315. doi: 10.3390/ijms25179315.
5
Seed free synthesis of polyethylene glycol stabilized gold nanoprisms exploiting manganese metal at low pH.
Nanoscale Adv. 2023 Jun 20;5(14):3729-3736. doi: 10.1039/d3na00292f. eCollection 2023 Jul 11.
6
DNA-functionalized gold nanoparticles: Modification, characterization, and biomedical applications.
Front Chem. 2022 Dec 13;10:1095488. doi: 10.3389/fchem.2022.1095488. eCollection 2022.
8
Surfactant-free synthesis of porous Au by a urea complex.
RSC Adv. 2019 Jul 26;9(40):23081-23085. doi: 10.1039/c9ra04372a. eCollection 2019 Jul 23.
10
Surfactant-free synthesis of fluorescent platinum nanoclusters using HEPES buffer for hypochlorous acid sensing and imaging.
RSC Adv. 2022 Apr 4;12(17):10395-10400. doi: 10.1039/d1ra09064j. eCollection 2022 Mar 31.

本文引用的文献

1
Use of reduction rate as a quantitative knob for controlling the twin structure and shape of palladium nanocrystals.
Nano Lett. 2015 Feb 11;15(2):1445-50. doi: 10.1021/acs.nanolett.5b00158. Epub 2015 Jan 30.
2
Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging.
Sci Transl Med. 2015 Jan 21;7(271):271ra7. doi: 10.1126/scitranslmed.3010633.
3
Bionanotechnology. Colloidal nanoparticles as advanced biological sensors.
Science. 2014 Oct 3;346(6205):1247390. doi: 10.1126/science.1247390. Epub 2014 Oct 2.
7
Chlorine-enhanced surface mobility of Au(100).
Chemphyschem. 2013 Jan 14;14(1):233-6. doi: 10.1002/cphc.201200621. Epub 2012 Oct 18.
8
Localized surface plasmon resonance sensors.
Chem Rev. 2011 Jun 8;111(6):3828-57. doi: 10.1021/cr100313v.
9
Directed self-assembly of nanoparticles.
ACS Nano. 2010 Jul 27;4(7):3591-605. doi: 10.1021/nn100869j.
10
Tuning selectivity in catalysis by controlling particle shape.
Nat Mater. 2009 Feb;8(2):132-8. doi: 10.1038/nmat2371. Epub 2009 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验