Suppr超能文献

基于多目标元启发式算法的水下机器人任务规划

Underwater Robot Task Planning Using Multi-Objective Meta-Heuristics.

作者信息

Landa-Torres Itziar, Manjarres Diana, Bilbao Sonia, Del Ser Javier

机构信息

TECNALIA, 48160 Derio, Bizkaia, Spain.

Department of Communications Engineering, University of the Basque Country (UPV/EHU), 48013 Bilbao, Bizkaia, Spain.

出版信息

Sensors (Basel). 2017 Apr 4;17(4):762. doi: 10.3390/s17040762.

Abstract

Robotics deployed in the underwater medium are subject to stringent operational conditions that impose a high degree of criticality on the allocation of resources and the schedule of operations in mission planning. In this context the so-called cost of a mission must be considered as an additional criterion when designing optimal task schedules within the mission at hand. Such a cost can be conceived as the impact of the mission on the robotic resources themselves, which range from the consumption of battery to other negative effects such as mechanic erosion. This manuscript focuses on this issue by devising three heuristic solvers aimed at efficiently scheduling tasks in robotic swarms, which collaborate together to accomplish a mission, and by presenting experimental results obtained over realistic scenarios in the underwater environment. The heuristic techniques resort to a Random-Keys encoding strategy to represent the allocation of robots to tasks and the relative execution order of such tasks within the schedule of certain robots. The obtained results reveal interesting differences in terms of Pareto optimality and spread between the algorithms considered in the benchmark, which are insightful for the selection of a proper task scheduler in real underwater campaigns.

摘要

部署在水下环境中的机器人面临着严格的操作条件,这对任务规划中的资源分配和操作时间表提出了高度的关键性要求。在此背景下,在为手头任务设计最优任务时间表时,必须将所谓的任务成本视为一个额外的标准。这样的成本可以被理解为任务对机器人资源本身的影响,其范围从电池消耗到其他负面影响,如机械磨损。本文通过设计三种启发式求解器来专注于这个问题,这些求解器旨在有效地调度机器人集群中的任务,这些机器人集群协同完成一项任务,并通过展示在水下环境的实际场景中获得的实验结果。启发式技术采用随机键编码策略来表示机器人对任务的分配以及在某些机器人的时间表中此类任务的相对执行顺序。所获得的结果揭示了在基准测试中考虑的算法之间在帕累托最优性和分布方面有趣的差异,这对于在实际水下作业中选择合适的任务调度器具有启发性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a4f/5421722/ca1d6c452d0b/sensors-17-00762-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验