Suppr超能文献

神经工程学的新兴前沿:脑连接的网络科学

Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity.

作者信息

Bassett Danielle S, Khambhati Ankit N, Grafton Scott T

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104.

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104.

出版信息

Annu Rev Biomed Eng. 2017 Jun 21;19:327-352. doi: 10.1146/annurev-bioeng-071516-044511. Epub 2017 Mar 27.

Abstract

Neuroengineering is faced with unique challenges in repairing or replacing complex neural systems that are composed of many interacting parts. These interactions form intricate patterns over large spatiotemporal scales and produce emergent behaviors that are difficult to predict from individual elements. Network science provides a particularly appropriate framework in which to study and intervene in such systems by treating neural elements (cells, volumes) as nodes in a graph and neural interactions (synapses, white matter tracts) as edges in that graph. Here, we review the emerging discipline of network neuroscience, which uses and develops tools from graph theory to better understand and manipulate neural systems from micro- to macroscales. We present examples of how human brain imaging data are being modeled with network analysis and underscore potential pitfalls. We then highlight current computational and theoretical frontiers and emphasize their utility in informing diagnosis and monitoring, brain-machine interfaces, and brain stimulation. A flexible and rapidly evolving enterprise, network neuroscience provides a set of powerful approaches and fundamental insights that are critical for the neuroengineer's tool kit.

摘要

神经工程在修复或替换由许多相互作用部分组成的复杂神经系统时面临着独特的挑战。这些相互作用在大的时空尺度上形成复杂的模式,并产生从单个元素难以预测的涌现行为。网络科学提供了一个特别合适的框架,通过将神经元素(细胞、区域)视为图中的节点,将神经相互作用(突触、白质束)视为该图中的边,来研究和干预此类系统。在这里,我们回顾网络神经科学这一新兴学科,它使用并发展图论工具,以更好地从微观到宏观尺度理解和操纵神经系统。我们展示了如何用网络分析对人类脑成像数据进行建模的例子,并强调了潜在的陷阱。然后,我们突出当前的计算和理论前沿,并强调它们在为诊断和监测、脑机接口以及脑刺激提供信息方面的效用。作为一个灵活且快速发展的领域,网络神经科学提供了一套强大的方法和基本见解,这些对于神经工程师的工具包至关重要。

相似文献

1
Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity.神经工程学的新兴前沿:脑连接的网络科学
Annu Rev Biomed Eng. 2017 Jun 21;19:327-352. doi: 10.1146/annurev-bioeng-071516-044511. Epub 2017 Mar 27.
2
Graph analysis of the human connectome: promise, progress, and pitfalls.人类连接组学的图分析:前景、进展与挑战。
Neuroimage. 2013 Oct 15;80:426-44. doi: 10.1016/j.neuroimage.2013.04.087. Epub 2013 Apr 30.
3
The human connectome: origins and challenges.人类连接组:起源与挑战。
Neuroimage. 2013 Oct 15;80:53-61. doi: 10.1016/j.neuroimage.2013.03.023. Epub 2013 Mar 23.
6
Human connectomics - what will the future demand?人类连接组学——未来的需求是什么?
Neuroimage. 2013 Oct 15;80:541-4. doi: 10.1016/j.neuroimage.2013.05.082. Epub 2013 May 29.
8
The parcellation-based connectome: limitations and extensions.基于分区的连接组学:局限性与拓展。
Neuroimage. 2013 Oct 15;80:397-404. doi: 10.1016/j.neuroimage.2013.03.053. Epub 2013 Apr 1.
9
From simple graphs to the connectome: networks in neuroimaging.从简单的图到连接组:神经影像学中的网络。
Neuroimage. 2012 Aug 15;62(2):881-6. doi: 10.1016/j.neuroimage.2011.08.085. Epub 2011 Sep 10.
10
Understanding the Emergence of Neuropsychiatric Disorders With Network Neuroscience.用网络神经科学理解神经精神疾病的发生。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 Sep;3(9):742-753. doi: 10.1016/j.bpsc.2018.03.015. Epub 2018 Apr 5.

引用本文的文献

2
A corollary discharge circuit in human speech.人类言语中的一种伴随放电回路。
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2404121121. doi: 10.1073/pnas.2404121121. Epub 2024 Dec 3.
6
Identifying steady state in the network dynamics of spiking neural networks.识别脉冲神经网络网络动力学中的稳态。
Heliyon. 2023 Mar 1;9(3):e13913. doi: 10.1016/j.heliyon.2023.e13913. eCollection 2023 Mar.

本文引用的文献

2
The network architecture of value learning.价值学习的网络架构。
Netw Neurosci. 2018 Jun 1;2(2):128-149. doi: 10.1162/netn_a_00021. eCollection 2018.
3
Structure, function, and control of the human musculoskeletal network.人体肌肉骨骼网络的结构、功能和控制。
PLoS Biol. 2018 Jan 18;16(1):e2002811. doi: 10.1371/journal.pbio.2002811. eCollection 2018 Jan.
4
The multilayer nature of ecological networks.生态网络的多层性质。
Nat Ecol Evol. 2017 Mar 23;1(4):101. doi: 10.1038/s41559-017-0101.
6
The Reorganization of Human Brain Networks Modulated by Driving Mental Fatigue.驾驶导致的精神疲劳对人脑网络重组的影响。
IEEE J Biomed Health Inform. 2017 May;21(3):743-755. doi: 10.1109/JBHI.2016.2544061. Epub 2016 Mar 18.
7
Optimal trajectories of brain state transitions.脑状态转换的最优轨迹。
Neuroimage. 2017 Mar 1;148:305-317. doi: 10.1016/j.neuroimage.2017.01.003. Epub 2017 Jan 11.
8
Multi-scale brain networks.多尺度脑网络。
Neuroimage. 2017 Oct 15;160:73-83. doi: 10.1016/j.neuroimage.2016.11.006. Epub 2016 Nov 11.
9
Evolution of network architecture in a granular material under compression.受压颗粒材料中网络结构的演变
Phys Rev E. 2016 Sep;94(3-1):032908. doi: 10.1103/PhysRevE.94.032908. Epub 2016 Sep 23.
10
Small-World Brain Networks Revisited.再次探讨小世界脑网络。
Neuroscientist. 2017 Oct;23(5):499-516. doi: 10.1177/1073858416667720. Epub 2016 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验