Suppr超能文献

功能连接性研究中用于控制运动伪影的参与者水平混杂回归策略的基准测试。

Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity.

作者信息

Ciric Rastko, Wolf Daniel H, Power Jonathan D, Roalf David R, Baum Graham L, Ruparel Kosha, Shinohara Russell T, Elliott Mark A, Eickhoff Simon B, Davatzikos Christos, Gur Ruben C, Gur Raquel E, Bassett Danielle S, Satterthwaite Theodore D

机构信息

Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Department of Psychiatry, Weill Cornell Medical College, NY, NY, USA.

出版信息

Neuroimage. 2017 Jul 1;154:174-187. doi: 10.1016/j.neuroimage.2017.03.020. Epub 2017 Mar 14.

Abstract

Since initial reports regarding the impact of motion artifact on measures of functional connectivity, there has been a proliferation of participant-level confound regression methods to limit its impact. However, many of the most commonly used techniques have not been systematically evaluated using a broad range of outcome measures. Here, we provide a systematic evaluation of 14 participant-level confound regression methods in 393 youths. Specifically, we compare methods according to four benchmarks, including the residual relationship between motion and connectivity, distance-dependent effects of motion on connectivity, network identifiability, and additional degrees of freedom lost in confound regression. Our results delineate two clear trade-offs among methods. First, methods that include global signal regression minimize the relationship between connectivity and motion, but result in distance-dependent artifact. In contrast, censoring methods mitigate both motion artifact and distance-dependence, but use additional degrees of freedom. Importantly, less effective de-noising methods are also unable to identify modular network structure in the connectome. Taken together, these results emphasize the heterogeneous efficacy of existing methods, and suggest that different confound regression strategies may be appropriate in the context of specific scientific goals.

摘要

自从有关运动伪影对功能连接测量影响的初步报告以来,出现了大量参与者层面的混杂回归方法来限制其影响。然而,许多最常用的技术尚未使用广泛的结果测量进行系统评估。在此,我们对393名青少年中的14种参与者层面的混杂回归方法进行了系统评估。具体而言,我们根据四个基准对方法进行比较,包括运动与连接性之间的残余关系、运动对连接性的距离依赖性影响、网络可识别性以及混杂回归中损失的额外自由度。我们的结果描绘了方法之间两个明显的权衡。首先,包括全局信号回归的方法将连接性与运动之间的关系最小化,但会导致距离依赖性伪影。相比之下,截断方法既能减轻运动伪影又能减轻距离依赖性,但会使用额外的自由度。重要的是,效果较差的去噪方法也无法识别连接组中的模块化网络结构。综上所述,这些结果强调了现有方法的异质性功效,并表明在特定科学目标的背景下,不同的混杂回归策略可能是合适的。

相似文献

1
Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity.
Neuroimage. 2017 Jul 1;154:174-187. doi: 10.1016/j.neuroimage.2017.03.020. Epub 2017 Mar 14.
3
An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
Neuroimage. 2018 May 1;171:415-436. doi: 10.1016/j.neuroimage.2017.12.073. Epub 2017 Dec 24.
5
Benchmarking common preprocessing strategies in early childhood functional connectivity and intersubject correlation fMRI.
Dev Cogn Neurosci. 2022 Apr;54:101087. doi: 10.1016/j.dcn.2022.101087. Epub 2022 Feb 18.
7
Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI.
Neuroimage. 2015 May 15;112:278-287. doi: 10.1016/j.neuroimage.2015.02.063. Epub 2015 Mar 11.
8
Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth.
Neuroimage. 2013 Dec;83:45-57. doi: 10.1016/j.neuroimage.2013.06.045. Epub 2013 Jun 21.
10
Using Edge Voxel Information to Improve Motion Regression for rs-fMRI Connectivity Studies.
Brain Connect. 2015 Nov;5(9):582-95. doi: 10.1089/brain.2014.0321. Epub 2015 Sep 28.

引用本文的文献

1
Distributed Cortical Network Dynamics of Binocular Convergent Eye Movements in Humans.
bioRxiv. 2025 Aug 21:2025.08.15.670412. doi: 10.1101/2025.08.15.670412.
3
CICADA: An automated and flexible tool for comprehensive fMRI noise reduction.
Imaging Neurosci (Camb). 2025 Aug 20;3. doi: 10.1162/IMAG.a.114. eCollection 2025.
4
How much is "enough"? Considerations for functional connectivity reliability in pediatric naturalistic fMRI.
Imaging Neurosci (Camb). 2025 Aug 19;3. doi: 10.1162/IMAG.a.117. eCollection 2025.
5
Voxel-Wise or Region-Wise Nuisance Regression for Functional Connectivity Analyses: Does It Matter?
Hum Brain Mapp. 2025 Aug 15;46(12):e70323. doi: 10.1002/hbm.70323.
7
Causal Connectivity Maps Derived from Single-Pulse Interleaved TMS/fMRI.
Res Sq. 2025 Aug 11:rs.3.rs-7158945. doi: 10.21203/rs.3.rs-7158945/v1.
8
Identifying dynamic reproducible brain states using a predictive modelling approach.
Imaging Neurosci (Camb). 2025 Apr 17;3. doi: 10.1162/imag_a_00540. eCollection 2025.
10
The efficacy of resting-state fMRI denoising pipelines for motion correction and behavioural prediction.
Imaging Neurosci (Camb). 2025 Aug 7;3. doi: 10.1162/IMAG.a.97. eCollection 2025.

本文引用的文献

1
Towards a consensus regarding global signal regression for resting state functional connectivity MRI.
Neuroimage. 2017 Jul 1;154:169-173. doi: 10.1016/j.neuroimage.2016.11.052. Epub 2016 Nov 22.
2
Sources and implications of whole-brain fMRI signals in humans.
Neuroimage. 2017 Feb 1;146:609-625. doi: 10.1016/j.neuroimage.2016.09.038. Epub 2016 Oct 15.
3
On the Stability of BOLD fMRI Correlations.
Cereb Cortex. 2017 Oct 1;27(10):4719-4732. doi: 10.1093/cercor/bhw265.
5
An improved model of motion-related signal changes in fMRI.
Neuroimage. 2017 Jan 1;144(Pt A):74-82. doi: 10.1016/j.neuroimage.2016.08.051. Epub 2016 Aug 25.
6
A robust method for suppressing motion-induced coil sensitivity variations during prospective correction of head motion in fMRI.
Magn Reson Imaging. 2016 Oct;34(8):1206-19. doi: 10.1016/j.mri.2016.06.005. Epub 2016 Jul 20.
7
Functional System and Areal Organization of a Highly Sampled Individual Human Brain.
Neuron. 2015 Aug 5;87(3):657-70. doi: 10.1016/j.neuron.2015.06.037. Epub 2015 Jul 23.
8
An open science resource for establishing reliability and reproducibility in functional connectomics.
Sci Data. 2014 Dec 9;1:140049. doi: 10.1038/sdata.2014.49. eCollection 2014.
9
Is fMRI "noise" really noise? Resting state nuisance regressors remove variance with network structure.
Neuroimage. 2015 Jul 1;114:158-69. doi: 10.1016/j.neuroimage.2015.03.070. Epub 2015 Apr 7.
10
The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth.
Neuroimage. 2016 Jan 1;124(Pt B):1115-1119. doi: 10.1016/j.neuroimage.2015.03.056. Epub 2015 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验