Suppr超能文献

由局部和全局拟合图像模型驱动的主动轮廓用于对强度不均匀性具有鲁棒性的图像分割。

Active contours driven by local and global fitted image models for image segmentation robust to intensity inhomogeneity.

作者信息

Akram Farhan, Garcia Miguel Angel, Puig Domenec

机构信息

Department of Computer Engineering and Mathematics, Rovira i Virgili University, Tarragona, Spain.

Department of Electronic and Communications Technology, Autonomous University of Madrid, Madrid, Spain.

出版信息

PLoS One. 2017 Apr 4;12(4):e0174813. doi: 10.1371/journal.pone.0174813. eCollection 2017.

Abstract

This paper presents a region-based active contour method for the segmentation of intensity inhomogeneous images using an energy functional based on local and global fitted images. A square image fitted model is defined by using both local and global fitted differences. Moreover, local and global signed pressure force functions are introduced in the solution of the energy functional to stabilize the gradient descent flow. In the final gradient descent solution, the local fitted term helps extract regions with intensity inhomogeneity, whereas the global fitted term targets homogeneous regions. A Gaussian kernel is applied to regularize the contour at each step, which not only smoothes it but also avoids the computationally expensive re-initialization. Intensity inhomogeneous images contain undesired smooth intensity variations (bias field) that alter the results of intensity-based segmentation methods. The bias field is approximated with a Gaussian distribution and the bias of intensity inhomogeneous regions is corrected by dividing the original image by the approximated bias field. In this paper, a two-phase model is first derived and then extended to a four-phase model to segment brain magnetic resonance (MR) images into the desired regions of interest. Experimental results with both synthetic and real brain MR images are used for a quantitative and qualitative comparison with state-of-the-art active contour methods to show the advantages of the proposed segmentation technique in practical terms.

摘要

本文提出了一种基于区域的主动轮廓方法,用于分割强度不均匀的图像,该方法使用基于局部和全局拟合图像的能量泛函。通过使用局部和全局拟合差异来定义方形图像拟合模型。此外,在能量泛函的求解中引入局部和全局符号压力力函数,以稳定梯度下降流。在最终的梯度下降解中,局部拟合项有助于提取具有强度不均匀性的区域,而全局拟合项针对均匀区域。在每一步应用高斯核来正则化轮廓,这不仅使其平滑,还避免了计算成本高昂的重新初始化。强度不均匀的图像包含不期望的平滑强度变化(偏差场),这会改变基于强度的分割方法的结果。偏差场用高斯分布近似,通过将原始图像除以近似偏差场来校正强度不均匀区域的偏差。本文首先推导了一个两相模型,然后将其扩展为四相模型,以将脑磁共振(MR)图像分割成所需的感兴趣区域。使用合成和真实脑MR图像的实验结果与现有最先进的主动轮廓方法进行定量和定性比较,以从实际角度展示所提出的分割技术的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aa7/5380353/888533544486/pone.0174813.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验