Suppr超能文献

一种用于同时进行磁共振图像强度不均匀性校正和分割的高效水平集方法。

An efficient level set method for simultaneous intensity inhomogeneity correction and segmentation of MR images.

作者信息

Ivanovska Tatyana, Laqua René, Wang Lei, Schenk Andrea, Yoon Jeong Hee, Hegenscheid Katrin, Völzke Henry, Liebscher Volkmar

机构信息

Ernst-Moritz-Arndt University, Greifswald, Germany.

Ernst-Moritz-Arndt University, Greifswald, Germany.

出版信息

Comput Med Imaging Graph. 2016 Mar;48:9-20. doi: 10.1016/j.compmedimag.2015.11.005. Epub 2015 Dec 14.

Abstract

Intensity inhomogeneity (bias field) is a common artefact in magnetic resonance (MR) images, which hinders successful automatic segmentation. In this work, a novel algorithm for simultaneous segmentation and bias field correction is presented. The proposed energy functional allows for explicit regularization of the bias field term, making the model more flexible, which is crucial in presence of strong inhomogeneities. An efficient minimization procedure, attempting to find the global minimum, is applied to the energy functional. The algorithm is evaluated qualitatively and quantitatively using a synthetic example and real MR images of different organs. Comparisons with several state-of-the-art methods demonstrate the superior performance of the proposed technique. Desirable results are obtained even for images with strong and complicated inhomogeneity fields and sparse tissue structures.

摘要

强度不均匀性(偏置场)是磁共振(MR)图像中常见的伪影,它阻碍了成功的自动分割。在这项工作中,提出了一种用于同时分割和偏置场校正的新算法。所提出的能量泛函允许对偏置场项进行显式正则化,使模型更加灵活,这在存在强不均匀性的情况下至关重要。一种试图找到全局最小值的高效最小化过程被应用于能量泛函。使用合成示例和不同器官的真实MR图像对该算法进行了定性和定量评估。与几种最新方法的比较证明了所提技术的优越性能。即使对于具有强且复杂的不均匀性场和稀疏组织结构的图像,也能获得理想的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验