Ivanovska Tatyana, Laqua René, Wang Lei, Schenk Andrea, Yoon Jeong Hee, Hegenscheid Katrin, Völzke Henry, Liebscher Volkmar
Ernst-Moritz-Arndt University, Greifswald, Germany.
Ernst-Moritz-Arndt University, Greifswald, Germany.
Comput Med Imaging Graph. 2016 Mar;48:9-20. doi: 10.1016/j.compmedimag.2015.11.005. Epub 2015 Dec 14.
Intensity inhomogeneity (bias field) is a common artefact in magnetic resonance (MR) images, which hinders successful automatic segmentation. In this work, a novel algorithm for simultaneous segmentation and bias field correction is presented. The proposed energy functional allows for explicit regularization of the bias field term, making the model more flexible, which is crucial in presence of strong inhomogeneities. An efficient minimization procedure, attempting to find the global minimum, is applied to the energy functional. The algorithm is evaluated qualitatively and quantitatively using a synthetic example and real MR images of different organs. Comparisons with several state-of-the-art methods demonstrate the superior performance of the proposed technique. Desirable results are obtained even for images with strong and complicated inhomogeneity fields and sparse tissue structures.
强度不均匀性(偏置场)是磁共振(MR)图像中常见的伪影,它阻碍了成功的自动分割。在这项工作中,提出了一种用于同时分割和偏置场校正的新算法。所提出的能量泛函允许对偏置场项进行显式正则化,使模型更加灵活,这在存在强不均匀性的情况下至关重要。一种试图找到全局最小值的高效最小化过程被应用于能量泛函。使用合成示例和不同器官的真实MR图像对该算法进行了定性和定量评估。与几种最新方法的比较证明了所提技术的优越性能。即使对于具有强且复杂的不均匀性场和稀疏组织结构的图像,也能获得理想的结果。