Suppr超能文献

通过凸优化分割与偏置场校正耦合模型实现脑磁共振图像的自动分割

Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.

作者信息

Chen Yunjie, Zhao Bo, Zhang Jianwei, Zheng Yuhui

机构信息

School of math and statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China.

School of math and statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China.

出版信息

Magn Reson Imaging. 2014 Sep;32(7):941-55. doi: 10.1016/j.mri.2014.05.003. Epub 2014 May 13.

Abstract

Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results.

摘要

磁共振(MR)图像的准确分割仍然具有挑战性,主要原因是强度不均匀性,也就是通常所说的偏置场。最近,具有几何信息约束的主动轮廓模型已被应用,然而,它们中的大多数在对MR数据进行分割之前,通过必要的预处理步骤来处理偏置场。本文提出了一种新颖的自动变分方法,该方法在分割具有高强度不均匀性的图像时,能够同时分割脑MR图像并校正偏置场。我们首先定义一个函数,用于在较小邻域内对图像像素进行聚类。该目标函数中的聚类中心有一个乘法因子,用于估计邻域内的偏置。为了降低噪声的影响,局部强度变化用具有不同均值和方差的高斯分布来描述。然后,将目标函数在整个域上进行积分。为了获得全局最优解并使结果独立于算法的初始化,我们将能量函数重构为凸函数,并使用分裂Bregman理论进行计算。我们方法的一个显著优点是其结果独立于初始化,这使得它能够进行稳健且完全自动化的应用。我们的方法能够估计相当一般轮廓的偏置,即使是在7T MR图像中。此外,我们的模型还能够区分具有不同方差的相似强度分布区域。所提出的方法已经在通过各种成像模态获取的图像上进行了严格验证,结果很有前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验