Shouno Osamu, Tachibana Yoshihisa, Nambu Atsushi, Doya Kenji
Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan; Honda Research Institute Japan Co., Ltd.Saitama, Japan.
Division of System Neurophysiology, Department of Physiological Sciences, National Institute for Physiological Sciences, Graduate University for Advanced Studies Aichi, Japan.
Front Neuroanat. 2017 Mar 21;11:21. doi: 10.3389/fnana.2017.00021. eCollection 2017.
Parkinson's disease is a movement disorder caused by dopamine depletion in the basal ganglia. Abnormally synchronized neuronal oscillations between 8 and 15 Hz in the basal ganglia are implicated in motor symptoms of Parkinson's disease. However, how these abnormal oscillations are generated and maintained in the dopamine-depleted state is unknown. Based on neural recordings in a primate model of Parkinson's disease and other experimental and computational evidence, we hypothesized that the recurrent circuit between the subthalamic nucleus (STN) and the external segment of the globus pallidus (GPe) generates and maintains parkinsonian oscillations, and that the cortical excitatory input to the STN amplifies them. To investigate this hypothesis through computer simulations, we developed a spiking neuron model of the STN-GPe circuit by incorporating electrophysiological properties of neurons and synapses. A systematic parameter search by computer simulation identified regions in the space of the intrinsic excitability of GPe neurons and synaptic strength from the GPe to the STN that reproduce normal and parkinsonian states. In the parkinsonian state, reduced firing of GPe neurons and increased GPe-STN inhibition trigger burst activities of STN neurons with strong post-inhibitory rebound excitation, which is usually subject to short-term depression. STN neuronal bursts are shaped into the 8-15 Hz, synchronous oscillations via recurrent interactions of STN and GPe neurons. Furthermore, we show that cortical excitatory input to the STN can amplify or suppress pathological STN oscillations depending on their phase and strength, predicting conditions of cortical inputs to the STN for suppressing oscillations.
帕金森病是一种由基底神经节中多巴胺耗竭引起的运动障碍。基底神经节中8至15赫兹之间异常同步的神经元振荡与帕金森病的运动症状有关。然而,这些异常振荡在多巴胺耗竭状态下是如何产生和维持的尚不清楚。基于帕金森病灵长类模型的神经记录以及其他实验和计算证据,我们假设丘脑底核(STN)与苍白球外侧部(GPe)之间的递归回路产生并维持帕金森振荡,并且皮质对STN的兴奋性输入会放大这些振荡。为了通过计算机模拟研究这一假设,我们通过整合神经元和突触的电生理特性,开发了一个STN-GPe回路的脉冲神经元模型。通过计算机模拟进行的系统参数搜索确定了GPe神经元固有兴奋性空间以及从GPe到STN的突触强度空间中能够重现正常状态和帕金森状态的区域。在帕金森状态下,GPe神经元放电减少以及GPe-STN抑制增加会触发STN神经元的爆发活动,并伴有强烈的抑制后反弹兴奋,而这种兴奋通常会受到短期抑制。STN神经元爆发通过STN和GPe神经元的递归相互作用形成8至15赫兹的同步振荡。此外,我们表明皮质对STN的兴奋性输入可以根据其相位和强度放大或抑制病理性STN振荡,从而预测抑制振荡时皮质对STN的输入条件。