Suppr超能文献

果胶甲酯酶34通过促进气孔运动对耐热性有贡献。

PECTIN METHYLESTERASE34 Contributes to Heat Tolerance through Its Role in Promoting Stomatal Movement.

作者信息

Huang Ya-Chen, Wu Hui-Chen, Wang Yin-Da, Liu Chia-Hung, Lin Ching-Chih, Luo Dan-Li, Jinn Tsung-Luo

机构信息

Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan (Y.C.H., H.C.W., Y.D.W., C.H.L., C.C.L., D.L.L., T.L.J.); and.

Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan (H.C.W.).

出版信息

Plant Physiol. 2017 Jun;174(2):748-763. doi: 10.1104/pp.17.00335. Epub 2017 Apr 5.

Abstract

Pectin, a major component of the primary cell wall, is synthesized in the Golgi apparatus and exported to the cell wall in a highly methylesterified form, then is partially demethylesterified by pectin methylesterases (PMEs; EC 3.1.1.11). PME activity on the status of pectin methylesterification profoundly affects the properties of pectin and, thereby, is critical for plant development and the plant defense response, although the roles of PMEs under heat stress (HS) are poorly understood. Functional genome annotation predicts that at least 66 potential genes are contained in Arabidopsis (). Thermotolerance assays of gene T-DNA insertion lines revealed two null mutant alleles of (At3g49220) that both consistently showed reduced thermotolerance. Nevertheless, their impairment was independently associated with the expression of HS-responsive genes. It was also observed that transcription was induced by abscisic acid and highly expressed in guard cells. We showed that the mutation has a defect in the control of stomatal movement and greatly altered PME and polygalacturonase (EC 3.2.1.15) activity, resulting in a heat-sensitive phenotype. has a role in the regulation of transpiration through the control of the stomatal aperture due to its cell wall-modifying enzyme activity during the HS response. Hence, PME34 is required for regulating guard cell wall flexibility to mediate the heat response in Arabidopsis.

摘要

果胶是植物初生细胞壁的主要成分,在高尔基体中合成,并以高度甲酯化的形式输出到细胞壁,然后被果胶甲酯酶(PMEs;EC 3.1.1.11)部分去甲酯化。PME对果胶甲酯化状态的作用深刻影响果胶的特性,因此对植物发育和植物防御反应至关重要,尽管人们对热胁迫(HS)下PME的作用了解甚少。功能基因组注释预测拟南芥中至少包含66个潜在基因()。对基因T-DNA插入系的耐热性分析揭示了(At3g49220)的两个无效突变等位基因,它们均一致表现出耐热性降低。然而,它们的损伤与热应激反应基因的表达独立相关。还观察到该基因的转录受脱落酸诱导并在保卫细胞中高表达。我们表明,该基因突变在气孔运动控制方面存在缺陷,并极大地改变了PME和多聚半乳糖醛酸酶(EC 3.2.1.15)的活性,从而导致热敏感表型。由于其在热应激反应期间具有细胞壁修饰酶活性,该基因在通过控制气孔孔径调节蒸腾作用中发挥作用。因此,PME34是调节保卫细胞壁柔韧性以介导拟南芥热反应所必需的。

相似文献

1
PECTIN METHYLESTERASE34 Contributes to Heat Tolerance through Its Role in Promoting Stomatal Movement.
Plant Physiol. 2017 Jun;174(2):748-763. doi: 10.1104/pp.17.00335. Epub 2017 Apr 5.
2
Pectin methylesterase is required for guard cell function in response to heat.
Plant Signal Behav. 2017 Jun 3;12(6):e1338227. doi: 10.1080/15592324.2017.1338227. Epub 2017 Jun 15.
4
Three Pectin Methylesterase Inhibitors Protect Cell Wall Integrity for Arabidopsis Immunity to .
Plant Physiol. 2017 Mar;173(3):1844-1863. doi: 10.1104/pp.16.01185. Epub 2017 Jan 12.
5
Demethylesterification of cell wall pectins in Arabidopsis plays a role in seed germination.
Plant Physiol. 2013 Jan;161(1):305-16. doi: 10.1104/pp.112.205724. Epub 2012 Nov 5.
6
Arabidopsis PECTIN METHYLESTERASEs contribute to immunity against Pseudomonas syringae.
Plant Physiol. 2014 Feb;164(2):1093-107. doi: 10.1104/pp.113.227637. Epub 2013 Dec 23.
7
Arabidopsis PME17 Activity can be Controlled by Pectin Methylesterase Inhibitor4.
Plant Signal Behav. 2015;10(2):e983351. doi: 10.4161/15592324.2014.983351.
9
Negatively Regulates Pectin Demethylesterification in Seed Coat Mucilage.
Plant Physiol. 2018 Apr;176(4):2737-2749. doi: 10.1104/pp.17.01771. Epub 2018 Feb 9.
10
Pectin methylesterase31 positively regulates salt stress tolerance in Arabidopsis.
Biochem Biophys Res Commun. 2018 Feb 5;496(2):497-501. doi: 10.1016/j.bbrc.2018.01.025. Epub 2018 Jan 4.

引用本文的文献

1
Advanced imaging-enabled understanding of cell wall remodeling mechanisms mediating plant drought stress tolerance.
Front Plant Sci. 2025 Aug 8;16:1635078. doi: 10.3389/fpls.2025.1635078. eCollection 2025.
2
Single-cell transcriptomic analyses reveal cellular and molecular patterns of rose petal responses to gray mold infection.
Hortic Res. 2025 Jun 9;12(9):uhaf152. doi: 10.1093/hr/uhaf152. eCollection 2025 Sep.
3
The Dynamic Remodeling of Plant Cell Wall in Response to Heat Stress.
Genes (Basel). 2025 May 24;16(6):628. doi: 10.3390/genes16060628.
4
Wheat COBRA-like Gene Confers Heat Tolerance in Plants.
Int J Mol Sci. 2025 Apr 25;26(9):4101. doi: 10.3390/ijms26094101.
6
Stomatal opening under high temperatures is controlled by the OST1-regulated TOT3-AHA1 module.
Nat Plants. 2025 Jan;11(1):105-117. doi: 10.1038/s41477-024-01859-w. Epub 2024 Nov 29.
9
Architecture and functions of stomatal cell walls in eudicots and grasses.
Ann Bot. 2024 Jul 9;134(2):195-204. doi: 10.1093/aob/mcae078.
10
Pectin methylesterase 31 is transcriptionally repressed by ABI5 to negatively regulate ABA-mediated inhibition of seed germination.
Front Plant Sci. 2024 Feb 2;15:1336689. doi: 10.3389/fpls.2024.1336689. eCollection 2024.

本文引用的文献

1
Combined Experimental and Computational Approaches Reveal Distinct pH Dependence of Pectin Methylesterase Inhibitors.
Plant Physiol. 2017 Feb;173(2):1075-1093. doi: 10.1104/pp.16.01790. Epub 2016 Dec 29.
2
The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions.
Front Plant Sci. 2016 Aug 10;7:984. doi: 10.3389/fpls.2016.00984. eCollection 2016.
3
The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses.
Plant Physiol. 2016 Oct;172(2):1182-1199. doi: 10.1104/pp.16.00860. Epub 2016 Aug 4.
4
ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress.
PLoS One. 2016 Jan 29;11(1):e0147625. doi: 10.1371/journal.pone.0147625. eCollection 2016.
5
PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1154-60. doi: 10.1093/nar/gkv1035. Epub 2015 Oct 17.
7
Tuning of pectin methylesterification: consequences for cell wall biomechanics and development.
Planta. 2015 Oct;242(4):791-811. doi: 10.1007/s00425-015-2358-5. Epub 2015 Jul 14.
9
HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development.
Plant Physiol. 2015 Mar;167(3):725-37. doi: 10.1104/pp.114.255604. Epub 2015 Jan 8.
10
PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination.
Plant Physiol. 2015 Feb;167(2):367-80. doi: 10.1104/pp.114.250928. Epub 2014 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验