Hocq Ludivine, Sénéchal Fabien, Lefebvre Valérie, Lehner Arnaud, Domon Jean-Marc, Mollet Jean-Claude, Dehors Jérémy, Pageau Karine, Marcelo Paulo, Guérineau François, Kolšek Katra, Mercadante Davide, Pelloux Jérôme
EA3900-BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR, Centre National de la Recherche Scientifique 3417, Université de Picardie, F-80039 Amiens, France (L.H., F.S., V.L., J.-M.D., K.P., F.G., J.P.).
Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, VASI, 76821 Mont-Saint-Aignan, France (A.L., J.-C.M., J.D.).
Plant Physiol. 2017 Feb;173(2):1075-1093. doi: 10.1104/pp.16.01790. Epub 2016 Dec 29.
The fine-tuning of the degree of methylesterification of cell wall pectin is a key to regulating cell elongation and ultimately the shape of the plant body. Pectin methylesterification is spatiotemporally controlled by pectin methylesterases (PMEs; 66 members in Arabidopsis [Arabidopsis thaliana]). The comparably large number of proteinaceous pectin methylesterase inhibitors (PMEIs; 76 members in Arabidopsis) questions the specificity of the PME-PMEI interaction and the functional role of such abundance. To understand the difference, or redundancy, between PMEIs, we used molecular dynamics (MD) simulations to predict the behavior of two PMEIs that are coexpressed and have distinct effects on plant development: AtPMEI4 and AtPMEI9. Simulations revealed the structural determinants of the pH dependence for the interaction of these inhibitors with AtPME3, a major PME expressed in roots. Key residues that are likely to play a role in the pH dependence were identified. The predictions obtained from MD simulations were confirmed in vitro, showing that AtPMEI9 is a stronger, less pH-independent inhibitor compared with AtPMEI4. Using pollen tubes as a developmental model, we showed that these biochemical differences have a biological significance. Application of purified proteins at pH ranges in which PMEI inhibition differed between AtPMEI4 and AtPMEI9 had distinct consequences on pollen tube elongation. Therefore, MD simulations have proven to be a powerful tool to predict functional diversity between PMEIs, allowing the discovery of a strategy that may be used by PMEIs to inhibit PMEs in different microenvironmental conditions and paving the way to identify the specific role of PMEI diversity in muro.
细胞壁果胶甲酯化程度的精细调节是调控细胞伸长乃至最终植物体形态的关键。果胶甲酯化受果胶甲酯酶(PMEs;拟南芥中有66个成员)的时空控制。相对大量的蛋白质类果胶甲酯酶抑制剂(PMEIs;拟南芥中有76个成员)使得PME - PMEI相互作用的特异性以及这种丰富性的功能作用受到质疑。为了理解PMEIs之间的差异或冗余性,我们使用分子动力学(MD)模拟来预测两种共表达且对植物发育有不同影响的PMEIs的行为:AtPMEI4和AtPMEI9。模拟揭示了这些抑制剂与AtPME3(一种在根中表达的主要PME)相互作用的pH依赖性的结构决定因素。确定了可能在pH依赖性中起作用的关键残基。MD模拟得到的预测结果在体外得到证实,表明与AtPMEI4相比,AtPMEI9是一种更强且对pH依赖性较小的抑制剂。以花粉管作为发育模型,我们表明这些生化差异具有生物学意义。在AtPMEI4和AtPMEI9对PMEI抑制作用不同的pH范围内应用纯化蛋白,对花粉管伸长有不同的影响。因此,MD模拟已被证明是预测PMEIs之间功能多样性的有力工具,有助于发现PMEIs在不同微环境条件下抑制PMEs可能采用的策略,并为确定PMEI多样性在细胞内的具体作用铺平道路。