Zhao Nannan, Zhou Zhiguo, Cui Shunli, Zhang Xinye, Zhu Shu, Wang Ying, Zenda Tinashe, Wenjing Li
College of Life Science, Langfang Normal University, Langfang, Hebei, China.
State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China.
Front Plant Sci. 2025 Aug 8;16:1635078. doi: 10.3389/fpls.2025.1635078. eCollection 2025.
Drought stress causes peculiar challenges to plant cells reliant on turgor pressure and a polysaccharides-enriched cell wall for growth and development. Appropriate cell wall changes in mechanical properties and biochemical composition under stress conditions constitute an indispensable stress adaptation strategy. A better understanding of stress-induced cell wall modifications is not only crucial for accruing fundamental scientific knowledge in plant biology, but will help us design novel strategies for enhancing crop drought tolerance. Here, we extensively reviewed how selected cell wall remodeling mechanisms, including cell wall demethylesterification, cell wall loosening and stiffening, stomata guard cell wall adjustment, cell wall lignification and root cell wall suberization orchestrate plant drought tolerance, revealing a potential target area for drought tolerance improvement in crops. Stress-induced demethylesterification of pectins, mediated by pectin methylesterases, permits calcium crosslinking of polyphenolics, which enhances cell wall rigidity and may help in intra-cell water preservation. Cell wall proteins such as xyloglucan endotransglucosylases/hydrolase, β-glucanases and expansins are regulated by drought stress, and orchestrate cell turgor-driven cell expansion, through modulating the loosening of cell wall polysaccharides, enabling cell and organ growth under those conditions. Meanwhile, overexpression of certain cell wall proteins/genes such as expansins may promote drought tolerance by improving cell water retention, antioxidant capacity, water use efficiency, and osmotic adjustment. We also discuss the genetic, transcriptional, and phytohormonal regulations of cell wall remodeling. Further, we highlight the recent advancements in elucidation of plant cell wall biosynthesis as aided by cutting-edge high-resolution imaging techniques that now facilitate direct visualization and quantitative (real-time) microanalysis of cell wall chemical composition and dynamics. Integrating latest cell wall imaging techniques to innovative single-cell omics, genome editing, and advanced data analysis approaches could facilitate appropriate cell wall modifications necessary for drought tolerance engineering in crop plants.
干旱胁迫给依赖膨压和富含多糖的细胞壁进行生长发育的植物细胞带来了特殊挑战。在胁迫条件下,细胞壁机械性能和生化组成的适当变化构成了一种不可或缺的胁迫适应策略。更好地理解胁迫诱导的细胞壁修饰不仅对于积累植物生物学的基础科学知识至关重要,还将帮助我们设计提高作物耐旱性的新策略。在此,我们广泛综述了包括细胞壁去甲基化、细胞壁松弛和硬化、气孔保卫细胞壁调节、细胞壁木质化和根细胞壁栓质化等在内的特定细胞壁重塑机制如何协同植物的耐旱性,揭示了作物耐旱性改良的一个潜在目标领域。由果胶甲酯酶介导的胁迫诱导的果胶去甲基化允许多酚类物质的钙交联,这增强了细胞壁的刚性并可能有助于细胞内水分的保存。细胞壁蛋白如木葡聚糖内转糖基酶/水解酶、β-葡聚糖酶和扩张蛋白受干旱胁迫调控,并通过调节细胞壁多糖的松弛来协调细胞膨压驱动的细胞扩张,从而使细胞和器官在这些条件下生长。同时,某些细胞壁蛋白/基因如扩张蛋白的过表达可能通过提高细胞保水能力、抗氧化能力、水分利用效率和渗透调节来促进耐旱性。我们还讨论了细胞壁重塑的遗传、转录和植物激素调控。此外,我们强调了在前沿高分辨率成像技术的辅助下,植物细胞壁生物合成阐明方面的最新进展,这些技术现在有助于直接可视化和定量(实时)微分析细胞壁的化学成分和动态。将最新的细胞壁成像技术与创新的单细胞组学、基因组编辑和先进的数据分析方法相结合,可能有助于作物耐旱性工程所需的适当细胞壁修饰。