Suppr超能文献

高度有序的富氮介孔碳氮化物及其在传感和光催化制氢方面的优异性能。

Highly Ordered Nitrogen-Rich Mesoporous Carbon Nitrides and Their Superior Performance for Sensing and Photocatalytic Hydrogen Generation.

机构信息

Future Industries Institute, Division of Information Technology, Engineering and Environment, Mawson Lakes Campus, University of South Australia, Adelaide, 5095, Australia.

Chemistry Division, Bhabha Atomic Research Centre, Trombay-400085, Mumbai, Maharashtra, India.

出版信息

Angew Chem Int Ed Engl. 2017 Jul 10;56(29):8481-8485. doi: 10.1002/anie.201702386. Epub 2017 Apr 6.

Abstract

Mesoporous carbon nitrides (MCN) are fascinating materials with unique semiconducting and basic properties that are useful in many applications including photocatalysis and sensing. Most syntheses of MCN focus on creating theoretically predicted C N stoichiometry with a band gap of 2.7 eV using a nano-hard templating approach with triazine-based precursors. However, the performance of the MCN in semiconducting applications is limited to the MCN framework with a small band gap, which would be linked with the addition of more N in the CN framework, but this remains a huge challenge. Here, we report a precursor with high nitrogen content, 3-amino-1,2,4-triazole, that enables the formation of new and well-ordered 3D MCN with C N stoichiometry (MCN-8), which has not been predicted so far, and a low-band-gap energy (2.2 eV). This novel class of material without addition of any dopants shows not only a superior photocatalytic water-splitting performance with a total of 801 μmol of H under visible-light irradiation for 3 h but also excellent sensing properties for toxic acids.

摘要

介孔氮化碳(MCN)是一种引人注目的材料,具有独特的半导体和碱性性质,在光催化和传感等许多应用中都很有用。大多数 MCN 的合成都集中在使用基于三嗪的前体通过纳米硬模板法来创造具有理论预测的 C N 化学计量比和 2.7eV 的带隙,这是一种具有小带隙的 MCN 框架,与在 CN 框架中添加更多的 N 有关,但这仍然是一个巨大的挑战。在这里,我们报告了一种具有高氮含量的前体,即 3-氨基-1,2,4-三唑,它能够形成具有 C N 化学计量比(MCN-8)的新型和有序的 3D MCN,这是迄今为止尚未预测到的,并且具有低能带隙能量(2.2eV)。这种新型材料无需添加任何掺杂剂,不仅在可见光照射下 3 小时内总共产生了 801μmol 的 H,表现出优异的光催化水分解性能,而且对有毒酸也具有优异的传感性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验