Maltanava Hanna, Belko Nikita, Tamarov Konstantin, Kinnunen Niko M, Nevalainen Pauliina, Zalieckas Martynas, Karpicz Renata, Koshevoy Igor, Semenov Dmitry, Suvanto Sari, Malykhin Sergei, Lehto Vesa-Pekka, Kuzhir Polina
Department of Physics and Mathematics, University of Eastern Finland Joensuu Finland
Department of Technical Physics, University of Eastern Finland Kuopio Finland.
Nanoscale Adv. 2025 Aug 5. doi: 10.1039/d5na00478k.
Titanium dioxide (TiO) and its heterostructures are among the most extensively studied materials for photo- and electrocatalytic applications. Optimizing their synthesis remains crucial for enhancing performance and reducing production costs. In this work, we report a simple, eco-friendly method for preparing TiO/graphitic carbon nitride (g-CN) nanocomposites in both powder and thin-film forms. The method takes advantage of the catalytic properties of TiO to significantly lower the temperature required for the formation of g-CN from urea, from 600 °C to 300 °C. Incorporating lyophilization prior to thermal treatment results in a . 60% increase in the specific surface area. The materials were evaluated for their photo- and electrocatalytic performance. Upon photoactivation at 385 nm, both TiO and TiO/g-CN powders generate the hydroxyl radical, with lyophilization enhancing radical production fivefold. The lyophilized TiO/g-CN nanocomposite exhibits 14% higher photocatalytic activity than its TiO counterpart. In electrocatalytic studies, TiO/g-CN thin films demonstrate a 70 mV lower overpotential for oxygen reduction compared to TiO films. These results highlight the potential of the synthesized nanocomposites for environmental remediation and in energy-related applications such as fuel cell electrodes.
二氧化钛(TiO₂)及其异质结构是光催化和电催化应用中研究最为广泛的材料之一。优化其合成对于提高性能和降低生产成本仍然至关重要。在这项工作中,我们报告了一种简单、环保的方法,用于制备粉末和薄膜形式的TiO₂/石墨相氮化碳(g-C₃N₄)纳米复合材料。该方法利用TiO₂的催化特性,将由尿素形成g-C₃N₄所需的温度从600℃显著降低至300℃。在热处理之前进行冻干处理可使比表面积增加60%。对这些材料的光催化和电催化性能进行了评估。在385nm光激发下,TiO₂和TiO₂/g-C₃N₄粉末均能产生羟基自由基,冻干处理使自由基生成量提高了五倍。冻干的TiO₂/g-C₃N₄纳米复合材料的光催化活性比其TiO₂对应物高14%。在电催化研究中,TiO₂/g-C₃N₄薄膜在氧还原方面的过电位比TiO₂薄膜低70mV。这些结果突出了合成的纳米复合材料在环境修复以及燃料电池电极等能源相关应用中的潜力。