Suppr超能文献

最优点过程滤波与合并过程估计

Optimal point process filtering and estimation of the coalescent process.

作者信息

Parag Kris V, Pybus Oliver G

机构信息

Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.

Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.

出版信息

J Theor Biol. 2017 May 21;421:153-167. doi: 10.1016/j.jtbi.2017.04.001. Epub 2017 Apr 3.

Abstract

The coalescent process is a widely used approach for inferring the demographic history of a population, from samples of its genetic diversity. Several parametric and non-parametric coalescent inference methods, involving Markov chain Monte Carlo, Gaussian processes, and other algorithms, already exist. However, these techniques are not always easy to adapt and apply, thus creating a need for alternative methodologies. We introduce the Bayesian Snyder filter as an easily implementable and flexible minimum mean square error estimator for parametric demographic functions on fixed genealogies. By reinterpreting the coalescent as a self-exciting Markov process, we show that the Snyder filter can be applied to both isochronously and heterochronously sampled datasets. We analytically solve the filter equations for the constant population size Kingman coalescent, derive expressions for its mean squared estimation error, and estimate its robustness to prior distribution specification. For populations with deterministically time-varying size we numerically solve the Snyder equations, and test this solution on common demographic models. We find that the Snyder filter accurately recovers the true demographic history for these models. We also apply the filter to a well-studied, dataset of hepatitis C virus sequences and show that the filter compares well to a popular phylodynamic inference method. The Snyder filter is an exact (given discretised priors, it does not approximate the posterior) and direct Bayesian estimation method that has the potential to become a useful alternative tool for coalescent inference.

摘要

溯祖过程是一种广泛使用的方法,用于从种群遗传多样性样本中推断其人口历史。目前已经存在几种参数化和非参数化的溯祖推断方法,包括马尔可夫链蒙特卡罗、高斯过程和其他算法。然而,这些技术并不总是易于改编和应用,因此需要其他方法。我们引入贝叶斯斯奈德滤波器,作为一种易于实现且灵活的最小均方误差估计器,用于固定系谱上的参数化人口函数。通过将溯祖过程重新解释为一个自激马尔可夫过程,我们表明斯奈德滤波器可应用于等时采样和异时采样数据集。我们解析求解了恒定种群大小的金曼溯祖过程的滤波器方程,推导了其均方估计误差的表达式,并评估了其对先验分布规范的稳健性。对于种群大小随时间确定性变化的情况,我们通过数值方法求解斯奈德方程,并在常见的人口模型上测试该解。我们发现斯奈德滤波器能准确恢复这些模型的真实人口历史。我们还将该滤波器应用于一个经过充分研究的丙型肝炎病毒序列数据集,并表明该滤波器与一种流行的系统发育动力学推断方法相比表现良好。斯奈德滤波器是一种精确的(给定离散先验,它不近似后验)直接贝叶斯估计方法,有潜力成为溯祖推断的一种有用替代工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验