Opgen-Rhein Rainer, Fahrmeir Ludwig, Strimmer Korbinian
Department of Statistics, University of Munich, Ludwigstr, 33, D-80539 Munich, Germany.
BMC Evol Biol. 2005 Jan 21;5:6. doi: 10.1186/1471-2148-5-6.
Coalescent theory is a general framework to model genetic variation in a population. Specifically, it allows inference about population parameters from sampled DNA sequences. However, most currently employed variants of coalescent theory only consider very simple demographic scenarios of population size changes, such as exponential growth.
Here we develop a coalescent approach that allows Bayesian non-parametric estimation of the demographic history using genealogies reconstructed from sampled DNA sequences. In this framework inference and model selection is done using reversible jump Markov chain Monte Carlo (MCMC). This method is computationally efficient and overcomes the limitations of related non-parametric approaches such as the skyline plot. We validate the approach using simulated data. Subsequently, we reanalyze HIV-1 sequence data from Central Africa and Hepatitis C virus (HCV) data from Egypt.
The new method provides a Bayesian procedure for non-parametric estimation of the demographic history. By construction it additionally provides confidence limits and may be used jointly with other MCMC-based coalescent approaches.
溯祖理论是用于对种群中的遗传变异进行建模的通用框架。具体而言,它允许从采样的DNA序列推断种群参数。然而,目前大多数采用的溯祖理论变体仅考虑种群大小变化的非常简单的人口统计学情景,例如指数增长。
在此,我们开发了一种溯祖方法,该方法允许使用从采样的DNA序列重建的系谱对人口历史进行贝叶斯非参数估计。在此框架中,使用可逆跳跃马尔可夫链蒙特卡罗(MCMC)进行推断和模型选择。该方法计算效率高,克服了诸如天际线图等相关非参数方法的局限性。我们使用模拟数据验证了该方法。随后,我们重新分析了来自中非的HIV-1序列数据和来自埃及的丙型肝炎病毒(HCV)数据。
新方法提供了一种用于人口历史非参数估计的贝叶斯程序。通过构建,它还提供了置信限,并且可以与其他基于MCMC的溯祖方法联合使用。