Suppr超能文献

基于缺失的基因组编辑技术所产生的作物新性状。

New traits in crops produced by genome editing techniques based on deletions.

作者信息

van de Wiel C C M, Schaart J G, Lotz L A P, Smulders M J M

机构信息

Wageningen University and Research, Wageningen, The Netherlands.

出版信息

Plant Biotechnol Rep. 2017;11(1):1-8. doi: 10.1007/s11816-017-0425-z. Epub 2017 Feb 13.

Abstract

One of the most promising New Plant Breeding Techniques is genome editing (also called gene editing) with the help of a programmable site-directed nuclease (SDN). In this review, we focus on SDN-1, which is the generation of small deletions or insertions (indels) at a precisely defined location in the genome with zinc finger nucleases (ZFN), TALENs, or CRISPR-Cas9. The programmable nuclease is used to induce a double-strand break in the DNA, while the repair is left to the plant cell itself, and mistakes are introduced, while the cell is repairing the double-strand break using the relatively error-prone NHEJ pathway. From a biological point of view, it could be considered as a form of targeted mutagenesis. We first discuss improvements and new technical variants for SDN-1, in particular employing CRISPR-Cas, and subsequently explore the effectiveness of targeted deletions that eliminate the function of a gene, as an approach to generate novel traits useful for improving agricultural sustainability, including disease resistances. We compare them with examples of deletions that resulted in novel functionality as known from crop domestication and classical mutation breeding (both using radiation and chemical mutagens). Finally, we touch upon regulatory and access and benefit sharing issues regarding the plants produced.

摘要

最具前景的新型植物育种技术之一是借助可编程的位点定向核酸酶(SDN)进行基因组编辑(也称为基因编辑)。在本综述中,我们聚焦于SDN-1,即利用锌指核酸酶(ZFN)、转录激活样效应因子核酸酶(TALENs)或CRISPR-Cas9在基因组中精确定义的位置产生小的缺失或插入(Indels)。可编程核酸酶用于诱导DNA双链断裂,而修复则留给植物细胞自身,并且在细胞使用相对容易出错的非同源末端连接(NHEJ)途径修复双链断裂时会引入错误。从生物学角度来看,这可以被视为一种靶向诱变形式。我们首先讨论SDN-1的改进和新技术变体,特别是采用CRISPR-Cas的情况,随后探讨消除基因功能的靶向缺失作为产生有助于提高农业可持续性的新性状(包括抗病性)的一种方法的有效性。我们将它们与作物驯化和经典诱变育种(使用辐射和化学诱变剂)中已知的产生新功能的缺失实例进行比较。最后,我们涉及有关所产生植物的监管以及获取和利益分享问题。

相似文献

6
Genome editing with engineered nucleases in plants.利用工程核酸酶对植物进行基因组编辑。
Plant Cell Physiol. 2015 Mar;56(3):389-400. doi: 10.1093/pcp/pcu170. Epub 2014 Nov 20.
7
CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture.CRISPR/Cas 基因组编辑与农业精准植物育种。
Annu Rev Plant Biol. 2019 Apr 29;70:667-697. doi: 10.1146/annurev-arplant-050718-100049. Epub 2019 Mar 5.
9
Gene Editing in Clinical Practice: Where are We?临床实践中的基因编辑:我们目前处于什么阶段?
Indian J Clin Biochem. 2019 Jan;34(1):19-25. doi: 10.1007/s12291-018-0804-4. Epub 2019 Jan 1.

引用本文的文献

10

本文引用的文献

8
10
DNA Breaks and End Resection Measured Genome-wide by End Sequencing.通过末端测序全基因组测量DNA断裂与末端切除
Mol Cell. 2016 Sep 1;63(5):898-911. doi: 10.1016/j.molcel.2016.06.034. Epub 2016 Jul 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验