Suppr超能文献

通过定量时间代谢组学网络整合阐明动态代谢生理学。

Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics.

机构信息

Sinopia Biosciences, San Diego, CA, USA.

Bioengineering Department, University of California, San Diego, La Jolla, CA, USA.

出版信息

Sci Rep. 2017 Apr 7;7:46249. doi: 10.1038/srep46249.

Abstract

The increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time-course absolute quantitative metabolomics. This approach, termed "unsteady-state flux balance analysis" (uFBA), is applied to four cellular systems: three dynamic and one steady-state as a negative control. uFBA and FBA predictions are contrasted, and uFBA is found to be more accurate in predicting dynamic metabolic flux states for red blood cells, platelets, and Saccharomyces cerevisiae. Notably, only uFBA predicts that stored red blood cells metabolize TCA intermediates to regenerate important cofactors, such as ATP, NADH, and NADPH. These pathway usage predictions were subsequently validated through C isotopic labeling and metabolic flux analysis in stored red blood cells. Utilizing time-course metabolomics data, uFBA provides an accurate method to predict metabolic physiology at the cellular scale for dynamic systems.

摘要

代谢组学数据的可用性不断增加,这就需要新的方法来进行更深入的数据分析和解释。我们提出了一种通量平衡分析方法,通过整合时间序列绝对定量代谢组学,可在细胞尺度上计算动态的细胞内代谢变化。该方法称为“非稳态通量平衡分析”(uFBA),我们将其应用于四个细胞系统:三个动态系统和一个稳态系统作为阴性对照。对比了 uFBA 和 FBA 的预测结果,发现 uFBA 在预测红细胞、血小板和酿酒酵母的动态代谢通量状态方面更为准确。值得注意的是,只有 uFBA 预测储存的红细胞会代谢 TCA 中间产物来再生重要的辅因子,如 ATP、NADH 和 NADPH。随后通过在储存的红细胞中进行 C 同位素标记和代谢通量分析,验证了这些途径的利用预测。利用时间序列代谢组学数据,uFBA 为动态系统在细胞尺度上预测代谢生理学提供了一种准确的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1598/5384226/cb9e81b1f93d/srep46249-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验