Suppr超能文献

表达木糖异构酶的木糖消耗型酿酒酵母菌株的代谢组学和(13)C代谢通量分析。

Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase.

作者信息

Wasylenko Thomas M, Stephanopoulos Gregory

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, Massachussetts.

出版信息

Biotechnol Bioeng. 2015 Mar;112(3):470-83. doi: 10.1002/bit.25447. Epub 2014 Nov 24.

Abstract

Over the past two decades, significant progress has been made in the engineering of xylose-consuming Saccharomyces cerevisiae strains for production of lignocellulosic biofuels. However, the ethanol productivities achieved on xylose are still significantly lower than those observed on glucose for reasons that are not well understood. We have undertaken an analysis of central carbon metabolite pool sizes and metabolic fluxes on glucose and on xylose under aerobic and anaerobic conditions in a strain capable of rapid xylose assimilation via xylose isomerase in order to investigate factors that may limit the rate of xylose fermentation. We find that during xylose utilization the flux through the non-oxidative Pentose Phosphate Pathway (PPP) is high but the flux through the oxidative PPP is low, highlighting an advantage of the strain employed in this study. Furthermore, xylose fails to elicit the full carbon catabolite repression response that is characteristic of glucose fermentation in S. cerevisiae. We present indirect evidence that the incomplete activation of the fermentation program on xylose results in a bottleneck in lower glycolysis, leading to inefficient re-oxidation of NADH produced in glycolysis.

摘要

在过去二十年中,在构建用于生产木质纤维素生物燃料的消耗木糖的酿酒酵母菌株方面取得了重大进展。然而,由于尚不清楚的原因,木糖上的乙醇生产率仍显著低于葡萄糖上的乙醇生产率。我们对一株能够通过木糖异构酶快速同化木糖的菌株在有氧和厌氧条件下葡萄糖和木糖上的中心碳代谢物池大小和代谢通量进行了分析,以研究可能限制木糖发酵速率的因素。我们发现,在木糖利用过程中,通过非氧化戊糖磷酸途径(PPP)的通量很高,但通过氧化PPP的通量很低,这突出了本研究中所用菌株的一个优势。此外,木糖未能引发酿酒酵母中葡萄糖发酵特有的完全碳分解代谢物阻遏反应。我们提供间接证据表明,木糖发酵程序的不完全激活导致了低聚糖酵解的瓶颈,从而导致糖酵解中产生的NADH再氧化效率低下。

相似文献

5
Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
Bioresour Technol. 2016 Jun;209:290-6. doi: 10.1016/j.biortech.2016.02.124. Epub 2016 Mar 9.
7
Engineered harbors xylose isomerase and xylose transporter improves co-fermentation of xylose and glucose for ethanol production.
Prep Biochem Biotechnol. 2024 Sep;54(8):1058-1067. doi: 10.1080/10826068.2024.2315479. Epub 2024 Feb 13.
10
Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.
Bioresour Technol. 2016 Dec;222:422-430. doi: 10.1016/j.biortech.2016.09.130. Epub 2016 Oct 6.

引用本文的文献

2
C-metabolic flux analysis of in complex media.
Metab Eng Commun. 2025 Apr 1;20:e00260. doi: 10.1016/j.mec.2025.e00260. eCollection 2025 Jun.
3
Sustainable Food Waste Management in Anaerobic Digesters: Prediction of the Organic Load Impact by Metagenome-Scale Metabolic Modeling.
Environ Sci Technol. 2025 Apr 8;59(13):6659-6672. doi: 10.1021/acs.est.4c11180. Epub 2025 Mar 24.
4
Chemobiosis reveals tardigrade tun formation is dependent on reversible cysteine oxidation.
PLoS One. 2024 Jan 17;19(1):e0295062. doi: 10.1371/journal.pone.0295062. eCollection 2024.
5
Construction of a xylose metabolic pathway in Trichosporonoides oedocephalis ATCC 16958 for the production of erythritol and xylitol.
Biotechnol Lett. 2023 Dec;45(11-12):1529-1539. doi: 10.1007/s10529-023-03428-1. Epub 2023 Oct 13.
7
D-xylose accelerated death of pentose metabolizing Saccharomyces cerevisiae.
Biotechnol Biofuels Bioprod. 2023 Apr 17;16(1):67. doi: 10.1186/s13068-023-02320-4.
8
D-Xylose Sensing in : Insights from D-Glucose Signaling and Native D-Xylose Utilizers.
Int J Mol Sci. 2021 Nov 17;22(22):12410. doi: 10.3390/ijms222212410.
9
mfapy: An open-source Python package for C-based metabolic flux analysis.
Metab Eng Commun. 2021 Jul 17;13:e00177. doi: 10.1016/j.mec.2021.e00177. eCollection 2021 Dec.
10
Structure-based directed evolution improves growth on xylose by influencing in vivo enzyme performance.
Biotechnol Biofuels. 2020 Jan 11;13:5. doi: 10.1186/s13068-019-1643-0. eCollection 2020.

本文引用的文献

3
Kinetic isotope effects significantly influence intracellular metabolite (13) C labeling patterns and flux determination.
Biotechnol J. 2013 Sep;8(9):1080-9. doi: 10.1002/biot.201200276. Epub 2013 Aug 5.
7
Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption.
FEMS Yeast Res. 2012 Aug;12(5):582-97. doi: 10.1111/j.1567-1364.2012.00808.x. Epub 2012 Apr 30.
8
A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae.
Metab Eng. 2012 Jul;14(4):401-11. doi: 10.1016/j.ymben.2012.03.004. Epub 2012 Mar 18.
9
Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis.
Metab Eng. 2011 Nov;13(6):656-65. doi: 10.1016/j.ymben.2011.08.002. Epub 2011 Sep 1.
10
Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):504-9. doi: 10.1073/pnas.1010456108. Epub 2010 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验