Suppr超能文献

利用可穿透细胞的环肽靶向细胞内蛋白质-蛋白质相互作用。

Targeting intracellular protein-protein interactions with cell-permeable cyclic peptides.

作者信息

Qian Ziqing, Dougherty Patrick G, Pei Dehua

机构信息

Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, United States.

Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, United States.

出版信息

Curr Opin Chem Biol. 2017 Jun;38:80-86. doi: 10.1016/j.cbpa.2017.03.011. Epub 2017 Apr 4.

Abstract

Intracellular protein-protein interactions (PPIs) are challenging targets for conventional drug modalities, because small molecules generally do not bind to their large, flat binding sites with high affinity, whereas monoclonal antibodies cannot cross the cell membrane to reach the targets. Cyclic peptides in the 700-2000 molecular-weight range have the sufficient size and a balanced conformational flexibility/rigidity for binding to flat PPI interfaces with antibody-like affinity and specificity. Several powerful cyclic peptide library technologies were developed over the past decade to rapidly discover potent, specific cyclic peptide ligands against proteins of interest including those involved in PPIs. Methods are also being developed to enhance the membrane permeability of cyclic peptides through both passive diffusion and active transport mechanisms. Integration of the permeability-enhancing elements into cyclic peptide design has led to an increasing number of cell-permeable and biologically active cyclic peptides against intracellular PPIs. In this account, we review the recent developments in the design and synthesis of cell-permeable cyclic peptides.

摘要

细胞内蛋白质-蛋白质相互作用(PPIs)是传统药物作用方式面临的具有挑战性的靶点,因为小分子通常无法以高亲和力结合到其大的平面结合位点,而单克隆抗体不能穿过细胞膜到达靶点。分子量在700-2000范围内的环肽具有足够的大小以及平衡的构象灵活性/刚性,能够以类似抗体的亲和力和特异性结合到平面的PPI界面。在过去十年中,人们开发了几种强大的环肽文库技术,以快速发现针对感兴趣蛋白质(包括参与PPIs的蛋白质)的强效、特异性环肽配体。人们也在开发通过被动扩散和主动转运机制来增强环肽膜通透性的方法。将通透性增强元件整合到环肽设计中,已产生了越来越多针对细胞内PPIs的可穿透细胞且具有生物活性的环肽。在本综述中,我们回顾了可穿透细胞的环肽设计与合成的最新进展。

相似文献

2
Understanding Cell Penetration of Cyclic Peptides.理解环状肽的细胞穿透性。
Chem Rev. 2019 Sep 11;119(17):10241-10287. doi: 10.1021/acs.chemrev.9b00008. Epub 2019 May 14.
4
Targeting intracellular protein-protein interactions with macrocyclic peptides.靶向细胞内蛋白-蛋白相互作用的大环肽。
Trends Pharmacol Sci. 2022 Mar;43(3):234-248. doi: 10.1016/j.tips.2021.11.008. Epub 2021 Dec 13.

引用本文的文献

3
Peptide-encoding gene transfer to modulate intracellular protein-protein interactions.用于调节细胞内蛋白质-蛋白质相互作用的肽编码基因转移。
Mol Ther Methods Clin Dev. 2024 Feb 28;32(2):101226. doi: 10.1016/j.omtm.2024.101226. eCollection 2024 Jun 13.
5
Stabilizing Scaffold for Short Peptides Based on Knottins.基于结蛋白的短肽稳定支架
Curr Cancer Drug Targets. 2024;24(12):1275-1285. doi: 10.2174/0115680096285288240118090050.
10
Bicyclic Peptide Library Screening for the Identification of Gαi Protein Modulators.双环肽文库筛选鉴定 Gαi 蛋白调节剂。
J Med Chem. 2023 Sep 14;66(17):12396-12406. doi: 10.1021/acs.jmedchem.3c00873. Epub 2023 Aug 16.

本文引用的文献

1
Highly Efficient Synthesis of Covalently Cross-Linked Peptide Helices by Ring-Closing Metathesis.通过闭环复分解反应高效合成共价交联肽螺旋
Angew Chem Int Ed Engl. 1998 Dec 17;37(23):3281-3284. doi: 10.1002/(SICI)1521-3773(19981217)37:23<3281::AID-ANIE3281>3.0.CO;2-V.
5
DNA-encoded chemical libraries: foundations and applications in lead discovery.DNA编码化学文库:先导化合物发现的基础与应用
Drug Discov Today. 2016 Nov;21(11):1828-1834. doi: 10.1016/j.drudis.2016.07.013. Epub 2016 Jul 28.
6
Discovery and Mechanism of Highly Efficient Cyclic Cell-Penetrating Peptides.高效环化细胞穿透肽的发现与作用机制
Biochemistry. 2016 May 10;55(18):2601-12. doi: 10.1021/acs.biochem.6b00226. Epub 2016 Apr 28.
7
Cell permeability beyond the rule of 5.超过 5 规则的细胞通透性。
Adv Drug Deliv Rev. 2016 Jun 1;101:42-61. doi: 10.1016/j.addr.2016.03.013. Epub 2016 Apr 9.
8
Phage Selection of Chemically Stabilized α-Helical Peptide Ligands.化学稳定的α-螺旋肽配体的噬菌体筛选
ACS Chem Biol. 2016 May 20;11(5):1422-7. doi: 10.1021/acschembio.5b00963. Epub 2016 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验