Suppr超能文献

预测IIIA-pN2期非小细胞肺癌患者术后放疗进展和疗效的列线图。

Nomograms for predicting progression and efficacy of post-operation radiotherapy in IIIA-pN2 non-small cell lung cancer patients.

作者信息

Zhang Baozhong, Yuan Zhiyong, Zhao Lujun, Pang Qingsong, Wang Ping

机构信息

Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China.

出版信息

Oncotarget. 2017 Jun 6;8(23):37208-37216. doi: 10.18632/oncotarget.16564.

Abstract

In this retrospective study, we developed nomograms for predicting the efficacy of post-operation radiotherapy (PORT) in IIIA-N2 non-small cell lung cancer (NSCLC) patients. In total, 334 patients received post-operational chemotherapy and were included in the analysis. Of those, 115 also received either concurrent or sequential post-operational radiotherapy (PORT). Nomograms were developed using Cox proportional hazard regression models to identify clinicopathological characteristics that predicted progression free survival (PFS) and overall survival (OS), and subgroup analyses of the effects of PORT were performed using nomogram risk scores. PFS and OS predicted using the nomogram agreed well with actual PFS and OS, and patients with high PFS/OS nomogram scores had poorer prognoses. In subgroup analyses, PORT increased survival more in patients with low PFS nomogram risk scores or high OS nomogram risk scores. Thus, our novel nomogram risk score model predicted PFS, OS, and the efficacy of PORT in IIIA-N2 NSCLC patients.

摘要

在这项回顾性研究中,我们开发了列线图,用于预测IIIA-N2期非小细胞肺癌(NSCLC)患者术后放疗(PORT)的疗效。共有334例患者接受了术后化疗,并纳入分析。其中,115例患者还接受了同步或序贯术后放疗(PORT)。使用Cox比例风险回归模型开发列线图,以识别预测无进展生存期(PFS)和总生存期(OS)的临床病理特征,并使用列线图风险评分对PORT的效果进行亚组分析。使用列线图预测的PFS和OS与实际的PFS和OS高度一致,列线图PFS/OS评分高的患者预后较差。在亚组分析中,PORT在列线图PFS风险评分低或列线图OS风险评分高的患者中对生存期的提高更为明显。因此,我们新的列线图风险评分模型可预测IIIA-N2期NSCLC患者的PFS、OS和PORT疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e0/5514903/08842a95d41f/oncotarget-08-37208-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验