Liang Li, Xie Jinhui, Li Shulan, Yang Jie, Chen Dongdong, Wang Nan, Zhou Zubang
Department of Ultrasound, Gansu Provincial Hospital, Lanzhou 730000, China.
Department of thyroid surgery, Gansu Provincial Hospital, Lanzhou 730000, China.
Gland Surg. 2019 Aug;8(4):362-369. doi: 10.21037/gs.2019.07.09.
High resolution ultrasonography (US) is the first choice for diagnosis of thyroid cancer and is based on many sonographic features: composition, echogenicity, margins, calcifications, shape and vascularity. Here, we tried to develop a nomogram to evaluate papillary thyroid carcinoma (PTC) based on sonographic features.
From Aug 2016 to Dec 2017, a primary cohort of 382 patients with suspicious thyroid nodules and accepted US examinations were included in Gansu Provincial Hospital. Sonographic features were used to develop a nomogram with Cox regression analysis. The nomogram was validated using prospective data from 162 patients as the validation group.
The primary and validation cohort showed comparable clinical and US features in all aspects. Univariate and multivariate analyses showed solid composition [odds ratio (OR): 3.785; 95% confidence interval (CI): 1.504-9.528, P=0.005], hypoechoic (OR: 15.840; 95% CI: 5.754-43.602, P<0.001) and irregular margins (OR: 15.953; 95% CI: 5.897-43.160, P<0.001), microcalcifications (OR: 21.730; 95% CI: 7.119-66.329, P<0.001), taller than wide shape (OR: 5.153; 95% CI: 1.997-13.311, P=0.001), internal high vascularization (OR: 6.288; 95% CI: 2.175-18.181, P=0.001), and obscure borders (OR: 5.648; 95% CI: 2.118-15.065, P=0.001) as risk factors for PTC. Based on the seven risk factors, nomogram was developed and validated by a prospective group, and discrimination and calibration were measured using the concordance index (C-index).
Our novel nomogram risk score model based on the US features accurately predicted PTC nodule diagnosis.
高分辨率超声检查(US)是诊断甲状腺癌的首选方法,其基于多种超声特征:成分、回声性、边界、钙化、形态和血管分布。在此,我们试图基于超声特征开发一种列线图以评估甲状腺乳头状癌(PTC)。
2016年8月至2017年12月,甘肃省人民医院纳入了382例甲状腺结节可疑且接受超声检查的患者作为初始队列。利用超声特征通过Cox回归分析建立列线图。使用来自162例患者的前瞻性数据作为验证组对列线图进行验证。
初始队列和验证队列在各方面均表现出可比的临床和超声特征。单因素和多因素分析显示实性成分[比值比(OR):3.785;95%置信区间(CI):1.504 - 9.528,P = 0.005]、低回声(OR:15.840;95% CI:5.754 - 43.602,P < 0.001)、边界不规则(OR:15.953;95% CI:5.897 - 43.160,P < 0.001)、微钙化(OR:21.730;95% CI:7.119 - 66.329,P < 0.001)、纵横比大于1(OR:5.153;95% CI:1.997 - 13.311,P = 0.001)、内部血管丰富(OR:6.288;95% CI:2.175 - 18.181,P = 0.001)以及边界不清(OR:5.648;95% CI:2.118 - 15.065,P = 0.001)是PTC的危险因素。基于这七个危险因素,开发了列线图并由一个前瞻性组进行验证,使用一致性指数(C指数)测量区分度和校准度。
我们基于超声特征的新型列线图风险评分模型准确预测了PTC结节诊断。