Vitu Françoise, Casteau Soazig, Adeli Hossein, Zelinsky Gregory J, Castet Eric
Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille Université, Marseille, Francehttp://lpc.univ-amu.fr/spip.php?article267&lang=
Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille Université, Marseille, Francehttps://www.dur.ac.uk/research/directory/staff/?mode=staff&id=
J Vis. 2017 Apr 1;17(4):2. doi: 10.1167/17.4.2.
Saccades quite systematically undershoot a peripheral visual target by about 10% of its eccentricity while becoming more variable, mainly in amplitude, as the target becomes more peripheral. This undershoot phenomenon has been interpreted as the strategic adjustment of saccadic gain downstream of the superior colliculus (SC), where saccades are programmed. Here, we investigated whether the eccentricity-related increase in saccades' hypometria and imprecision might not instead result from overrepresentation of space closer to the fovea in the SC and visual-cortical areas. To test this magnification-factor (MF) hypothesis, we analyzed four parametric eye-movement data sets, collected while humans made saccades to single eccentric stimuli. We first established that the undershoot phenomenon generalizes to ordinary saccade amplitudes (0.5°-15°) and directions (0°-90°) and that landing-position distributions become not only increasingly elongated but also more skewed toward the fovea as target eccentricity increases. Moreover, we confirmed the MF hypothesis by showing (a) that the linear eccentricity-related increase in undershoot error and negative skewness canceled out when landing positions were log-scaled according to the MF in monkeys' SC and (b) that the spread, proportional to eccentricity outside an extended, 5°, foveal region, became circular and invariant in size in SC space. Yet the eccentricity-related increase in variability, slower near the fovea, yielded progressively larger and more elongated clusters toward foveal and vertical-meridian SC representations. What causes this latter, unexpected, pattern remains undetermined. Nevertheless, our findings clearly suggest that the undershoot phenomenon, and related variability, originate in, or upstream of, the SC, rather than reflecting downstream, adaptive, strategies.
扫视往往会系统性地比周边视觉目标的偏心率低约10%,同时随着目标变得更加周边,扫视的变化性会增加,主要是在幅度方面。这种欠冲现象被解释为在脑桥被盖网状核(SC)下游对扫视增益的策略性调整,扫视在此处被编程。在这里,我们研究了扫视的欠度量和不精确性与偏心率相关的增加是否可能不是由SC和视觉皮层区域中更靠近中央凹的空间过度表征导致的。为了检验这种放大因子(MF)假说,我们分析了四个参数化眼动数据集,这些数据集是在人类对单个偏心刺激进行扫视时收集的。我们首先确定,欠冲现象普遍存在于普通扫视幅度(0.5°-15°)和方向(0°-90°),并且随着目标偏心率的增加,着陆位置分布不仅变得越来越细长,而且更偏向中央凹。此外,我们通过以下方式证实了MF假说:(a)当根据猴子SC中的MF对着陆位置进行对数缩放时,与偏心率相关的欠冲误差和负偏度的线性增加相互抵消;(b)在扩展的5°中央凹区域之外,与偏心率成比例的散布在SC空间中变得圆形且大小不变。然而,与偏心率相关的变异性增加在中央凹附近较慢,在朝向中央凹和垂直子午线SC表征的方向上产生了越来越大且越来越细长的簇。导致后一种意外模式的原因仍未确定。尽管如此,我们的研究结果清楚地表明,欠冲现象以及相关的变异性起源于SC或其上游,而不是反映下游的适应性策略。