Suppr超能文献

扫视眼运动的控制是概率性的。

Gain control of saccadic eye movements is probabilistic.

机构信息

Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, United Kingdom;

Centre for Applied Vision Research, City, University of London, London EC1V 0HB, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):16137-16142. doi: 10.1073/pnas.1901963116. Epub 2019 Jul 23.

Abstract

Saccades are rapid eye movements that orient the visual axis toward objects of interest to allow their processing by the central, high-acuity retina. Our ability to collect visual information efficiently relies on saccadic accuracy, which is limited by a combination of uncertainty in the location of the target and motor noise. It has been observed that saccades have a systematic tendency to fall short of their intended targets, and it has been suggested that this bias originates from a cost function that overly penalizes hypermetric errors. Here, we tested this hypothesis by systematically manipulating the positional uncertainty of saccadic targets. We found that increasing uncertainty produced not only a larger spread of the saccadic endpoints but also more hypometric errors and a systematic bias toward the average of target locations in a given block, revealing that prior knowledge was integrated into saccadic planning. Moreover, by examining how variability and bias covaried across conditions, we estimated the asymmetry of the cost function and found that it was related to individual differences in the additional time needed to program secondary saccades for correcting hypermetric errors, relative to hypometric ones. Taken together, these findings reveal that the saccadic system uses a probabilistic-Bayesian control strategy to compensate for uncertainty in a statistically principled way and to minimize the expected cost of saccadic errors.

摘要

扫视是一种快速的眼球运动,它将视觉轴对准感兴趣的物体,以便中央高分辨率视网膜对其进行处理。我们高效地收集视觉信息的能力依赖于扫视的准确性,而扫视的准确性受到目标位置不确定性和运动噪声的综合限制。人们观察到,扫视的目标会有系统地偏离预期的目标,有人认为这种偏差源自于一个成本函数,该函数过度惩罚了超度量误差。在这里,我们通过系统地操纵扫视目标的位置不确定性来检验这一假设。我们发现,增加不确定性不仅会导致扫视端点的分布范围更大,而且还会产生更多的欠度量误差,并导致在给定块中系统地偏向目标位置的平均值,这表明先前的知识被整合到了扫视计划中。此外,通过检查跨条件的变异性和偏差如何共同变化,我们估计了成本函数的不对称性,并发现它与为纠正超度量误差而需要额外时间来规划二次扫视的个体差异有关,相对于欠度量误差而言。总之,这些发现揭示了扫视系统使用概率贝叶斯控制策略,以统计学上有原则的方式补偿不确定性,并最小化扫视误差的预期成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验