Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin, 12587, Germany.
Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, Berlin, 14195, Germany.
Microbiome. 2017 Apr 8;5(1):41. doi: 10.1186/s40168-017-0255-9.
Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments.
We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to Cs dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota.
Community β-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO and CH concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions.
By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea.
湖泊沉积物中蕴藏着多种多样的微生物群落,它们在不断地循环碳和营养物质,同时被水柱下沉的有机物不断定殖和潜在地埋藏。活动和埋藏之间的相互作用在水生沉积物中仍在很大程度上未被探索。我们旨在将分类组成与沉积物生物地球化学参数相关联,测试随着深度的变化,群落的更替是由分类替代还是由丰富度效应引起的,并为沉积物中的垂直群落结构提供一个基本模型。
我们分析了从德国北部寡营养的施泰钦湖采集的 4 个 30 米深的沉积物岩芯。每个 30 厘米的岩芯跨越了约 170 年的沉积物积累,根据 Cs 测年,被分成 1-4 厘米厚的层。我们检查了全套生物地球化学参数,并使用 DNA 代谢组学来研究微生物古菌、细菌和真核生物的群落组成。
群落β多样性表明在最上层的 30 厘米内几乎完全发生了转变。我们观察到一个明显的转变,从真核生物和细菌为主的上层(<5 厘米)到以细菌为主的中层(5-14 厘米),再到以深海底沉积物中常见的神秘古菌为主的深层(>14 厘米)。分类替代是构建群落组成的主要机制,并与指示微生物活性的参数(如 CO 和 CH 浓度、细菌蛋白质产量)相关。丰度损失的作用较小,但与指示过去条件的保守参数(如 C、N、P)相关。
通过包括所有三个域,我们能够直接将真核生物的指数衰减与活跃的沉积物微生物群落联系起来。深层古菌的优势证实了早期海洋系统的发现,并将淡水沉积物确立为一种潜在的低能量环境,类似于深海沉积物。我们提出了一个基于微生物特征和埋藏过程的沉积物结构和功能的一般模型。一个上部的“替代层”以随深度快速的分类更替、高微生物活性和生物相互作用为特征。一个下部的“贫化层”以低分类丰富度、更稳定的“低能量”条件和神秘古菌的优势为特征。