Suppr超能文献

基因组学中基于节点的差异网络分析

Node-based differential network analysis in genomics.

作者信息

Zhang Xiao-Fei, Ou-Yang Le, Yan Hong

机构信息

School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, China; Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China.

College of Information Engineering, Shenzhen University, Shenzhen, 518060, China.

出版信息

Comput Biol Chem. 2017 Aug;69:194-201. doi: 10.1016/j.compbiolchem.2017.03.010. Epub 2017 Apr 4.

Abstract

Gene dependency networks often undergo changes in response to different conditions. Understanding how these networks change across two conditions is an important task in genomics research. Most previous differential network analysis approaches assume that the difference between two condition-specific networks is driven by individual edges. Thus, they may fail in detecting key players which might represent important genes whose mutations drive the change of network. In this work, we develop a node-based differential network analysis (N-DNA) model to directly estimate the differential network that is driven by certain hub nodes. We model each condition-specific gene network as a precision matrix and the differential network as the difference between two precision matrices. Then we formulate a convex optimization problem to infer the differential network by combing a D-trace loss function and a row-column overlap norm penalty function. Simulation studies demonstrate that N-DNA provides more accurate estimate of the differential network than previous competing approaches. We apply N-DNA to ovarian cancer and breast cancer gene expression data. The model rediscovers known cancer-related genes and contains interesting predictions.

摘要

基因依赖网络常常会因不同条件而发生变化。了解这些网络在两种条件下如何变化是基因组学研究中的一项重要任务。大多数先前的差异网络分析方法假定两个特定条件网络之间的差异是由单个边驱动的。因此,它们可能无法检测到可能代表其突变驱动网络变化的重要基因的关键参与者。在这项工作中,我们开发了一种基于节点的差异网络分析(N-DNA)模型,以直接估计由某些枢纽节点驱动的差异网络。我们将每个特定条件的基因网络建模为一个精度矩阵,并将差异网络建模为两个精度矩阵之间的差异。然后,我们通过结合D-迹损失函数和行列重叠范数惩罚函数来制定一个凸优化问题,以推断差异网络。模拟研究表明,与先前的竞争方法相比,N-DNA对差异网络的估计更准确。我们将N-DNA应用于卵巢癌和乳腺癌基因表达数据。该模型重新发现了已知的癌症相关基因,并包含有趣的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验