Suppr超能文献

DINGO:基因组学中的差异网络分析

DINGO: differential network analysis in genomics.

作者信息

Ha Min Jin, Baladandayuthapani Veerabhadran, Do Kim-Anh

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Bioinformatics. 2015 Nov 1;31(21):3413-20. doi: 10.1093/bioinformatics/btv406. Epub 2015 Jul 6.

Abstract

MOTIVATION

Cancer progression and development are initiated by aberrations in various molecular networks through coordinated changes across multiple genes and pathways. It is important to understand how these networks change under different stress conditions and/or patient-specific groups to infer differential patterns of activation and inhibition. Existing methods are limited to correlation networks that are independently estimated from separate group-specific data and without due consideration of relationships that are conserved across multiple groups.

METHOD

We propose a pathway-based differential network analysis in genomics (DINGO) model for estimating group-specific networks and making inference on the differential networks. DINGO jointly estimates the group-specific conditional dependencies by decomposing them into global and group-specific components. The delineation of these components allows for a more refined picture of the major driver and passenger events in the elucidation of cancer progression and development.

RESULTS

Simulation studies demonstrate that DINGO provides more accurate group-specific conditional dependencies than achieved by using separate estimation approaches. We apply DINGO to key signaling pathways in glioblastoma to build differential networks for long-term survivors and short-term survivors in The Cancer Genome Atlas. The hub genes found by mRNA expression, DNA copy number, methylation and microRNA expression reveal several important roles in glioblastoma progression.

AVAILABILITY AND IMPLEMENTATION

R Package at: odin.mdacc.tmc.edu/∼vbaladan.

CONTACT

veera@mdanderson.org

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

癌症的进展和发展是由各种分子网络中的畸变引发的,这些畸变通过多个基因和通路的协同变化而产生。了解这些网络在不同应激条件下和/或特定患者群体中的变化,对于推断激活和抑制的差异模式非常重要。现有方法仅限于从单独的组特异性数据中独立估计的相关网络,而没有充分考虑多个组中保守的关系。

方法

我们提出了一种基于通路的基因组差异网络分析(DINGO)模型,用于估计组特异性网络并对差异网络进行推断。DINGO通过将组特异性条件依赖性分解为全局和组特异性成分来联合估计它们。这些成分的划分有助于更精确地描绘癌症进展和发展过程中的主要驱动事件和乘客事件。

结果

模拟研究表明,DINGO比使用单独的估计方法能提供更准确的组特异性条件依赖性。我们将DINGO应用于胶质母细胞瘤的关键信号通路,为癌症基因组图谱中的长期幸存者和短期幸存者构建差异网络。通过mRNA表达、DNA拷贝数、甲基化和microRNA表达发现的枢纽基因揭示了它们在胶质母细胞瘤进展中的几个重要作用。

可用性和实现方式

R包可在odin.mdacc.tmc.edu/∼vbaladan获取。

联系方式

veera@mdanderson.org

补充信息

补充数据可在《生物信息学》在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验